Magnetic Flux Emergence Along the Solar Cycle

Flux emergence plays an important role along the solar cycle. Magnetic flux emergence builds sunspot groups and solar activity. The sunspot groups contribute to the large scale behaviour of the magnetic field over the 11 year cycle and the reversal of the North and South magnetic polarity every 22 years. The leading polarity of sunspot groups is opposite in the North and South hemispheres and reverses for each new solar cycle. However the hemispheric rule shows the conservation of sign of the magnetic helicity with positive and negative magnetic helicity in the South and North hemispheres, respectively. MHD models of emerging flux have been developed over the past twenty years but have not yet succeeded to reproduce solar observations. The emergence of flux occurs through plasma layers of very high gradients of pressure and changing of modes from a large β to a low β plasma (<1). With the new armada of high spatial and temporal resolution instruments on the ground and in space, emergence of magnetic flux is observed in tremendous detail and followed during their transit through the upper atmosphere. Signatures of flux emergence in the corona depend on the pre-existing magnetic configuration and on the strength of the emerging flux. We review in this paper new and established models as well as the recent observations.

[1]  T. Gombosi,et al.  Eruption of a Buoyantly Emerging Magnetic Flux Rope , 2003 .

[2]  K. Shibasaki,et al.  Evidence for Alfvén Waves in Solar X-ray Jets , 2007, Science.

[3]  P. Gilman INSTABILITY OF MAGNETOHYDROSTATIC STELLAR INTERIORS FROM MAGNETIC BUOYANCY. I. , 1970 .

[4]  S. Antiochos,et al.  A MODEL FOR SOLAR POLAR JETS , 2009 .

[5]  D. Braun,et al.  HELIOSEISMOLOGY OF PRE-EMERGING ACTIVE REGIONS. III. STATISTICAL ANALYSIS , 2013, 1307.1938.

[6]  L. B. Rubio,et al.  MULTIWAVELENGTH OBSERVATIONS OF SMALL-SCALE RECONNECTION EVENTS TRIGGERED BY MAGNETIC FLUX EMERGENCE IN THE SOLAR ATMOSPHERE , 2010, 1007.4657.

[7]  Brigitte Schmieder,et al.  Magnetic flux emergence , 2007, Scholarpedia.

[8]  Vasilis Archontis,et al.  Magnetic flux emergence and associated dynamic phenomena in the Sun , 2012, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[9]  Recurrent Explosive Eruptions and the "Sigmoid-to-arcade" Transformation in the Sun Driven by Dynamical Magnetic Flux Emergence , 2014, 1405.6955.

[10]  M. Shimojo,et al.  H alpha Surges and X-Ray Jets in AR 7260 , 1996 .

[11]  C. Zwaan,et al.  Elements and Patterns in the Solar Magnetic Field , 1987 .

[12]  P. Chen,et al.  Spectral Analysis of Ellerman Bombs , 2006 .

[13]  C. Mandrini,et al.  The Counterkink Rotation of a Non-Hale Active Region , 2000, 1412.1456.

[14]  M. Carlsson,et al.  Twisted Flux Tube Emergence From the Convection Zone to the Corona , 2007, 0712.3854.

[15]  Jiangtao Su,et al.  ON A CORONAL BLOWOUT JET: THE FIRST OBSERVATION OF A SIMULTANEOUSLY PRODUCED BUBBLE-LIKE CME AND A JET-LIKE CME IN A SOLAR EVENT , 2011, 1110.5243.

[16]  K. Tsinganos,et al.  Recurrent solar jets in active regions , 2010, 1003.2349.

[17]  L. Y. Chaouche,et al.  Twisting solar coronal jet launched at the boundary of an active region , 2013, 1309.6514.

[18]  Emergence of granular-sized magnetic bubbles through the solar atmosphere. I. Spectropolarimetric observations and simulations , 2013, 1312.5735.

[19]  Chang Liu,et al.  A STANDARD-TO-BLOWOUT JET , 2011, 1105.3244.

[20]  E. Parker THE FORMATION OF SUNSPOTS FROM THE SOLAR TOROIDAL FIELD. THE EARTH'S MAGNETISM AND MAGNETO HYDRODYNAMICS , 1954 .

[21]  C. Zwaan,et al.  Phenomena in an Emerging Active Region. II. Properties of the Dynamic Small-Scale Structure , 1999 .

[22]  T. Yokoyama,et al.  Large-scale 3D MHD simulation on the solar flux emergence and the small-scale dynamic features in an active region , 2012, 1201.2809.

[23]  M. J. Murray,et al.  Outflows at the Edges of an Active Region in a Coronal Hole: A Signature of Active Region Expansion? , 2009, 0912.1246.

[24]  T. Magara,et al.  Sigmoid Structure of an Emerging Flux Tube , 2001 .

[25]  P. N. Bernasconi,et al.  Moving Dipolar Features in an Emerging Flux Region , 2002 .

[26]  A. Hood,et al.  A NUMERICAL MODEL OF STANDARD TO BLOWOUT JETS , 2013 .

[27]  M. Cheung,et al.  Solar Surface Emerging Flux Regions: A Comparative Study of Radiative MHD Modeling and Hinode SOT Observations , 2008, 0810.5723.

[28]  Spectropolarimetric Observation of an Emerging Flux Region: Triggering Mechanisms of Ellerman Bombs , 2008, 0805.4266.

[29]  T. Yokoyama,et al.  Magnetic reconnection as the origin of X-ray jets and Hα surges on the Sun , 1995, Nature.

[30]  P. Démoulin,et al.  The role of magnetic bald patches in surges and arch filament systems , 2002 .

[31]  J. C. del Toro Iniesta,et al.  Sunrise: INSTRUMENT, MISSION, DATA, AND FIRST RESULTS , 2010, 1008.3460.

[32]  T. Berger,et al.  Emergence of a Helical Flux Rope under an Active Region Prominence , 2008, 0801.1956.

[33]  N. Mansour,et al.  Signatures of Emerging Subsurface Structures in Acoustic Power Maps of the Sun , 2010, 1003.4305.

[34]  M. Cheung,et al.  Magnetic flux emergence in granular convection: radiative MHD simulations and observational signatures , 2007, astro-ph/0702666.

[35]  Y. Fan,et al.  The Emergence of a Twisted Ω-Tube into the Solar Atmosphere , 2001 .

[36]  R. Kitai On the mass motions and the atmospheric states of moustaches , 1983 .

[37]  J. Cirtain,et al.  DICHOTOMY OF SOLAR CORONAL JETS: STANDARD JETS AND BLOWOUT JETS , 2010 .

[38]  Takaaki Yokoyama,et al.  Filamentary structure on the Sun from the magnetic Rayleigh–Taylor instability , 2005, Nature.

[39]  P. Démoulin,et al.  Topological Analysis of Emerging Bipole Clusters Producing Violent Solar Events , 2013, 1312.3359.

[40]  G. Aulanier The physical mechanisms that initiate and drive solar eruptions , 2013, Proceedings of the International Astronomical Union.

[41]  A. Hood,et al.  Multiple eruptions from magnetic flux emergence , 2009, 0910.2616.

[42]  A. Berlicki,et al.  Spectrophotometric analysis of Ellerman bombs in the Ca II, H$\mathsf{\alpha}$, and UV range , 2007 .

[43]  Yukio Katsukawa,et al.  Chromospheric Anemone Jets as Evidence of Ubiquitous Reconnection , 2007, Science.

[44]  T. Magara Dynamic and Topological Features of Photospheric and Coronal Activities Produced by Flux Emergence in the Sun , 2006 .

[45]  S. Solanki,et al.  Magnetic field emergence in mesogranular-sized exploding granules observed with sunrise/IMaX data , 2011, 1110.4555.

[46]  Ronald L. Moore,et al.  FIBRILLAR CHROMOSPHERIC SPICULE-LIKE COUNTERPARTS TO AN EXTREME-ULTRAVIOLET AND SOFT X-RAY BLOWOUT CORONAL JET , 2010 .

[47]  A. Hood,et al.  Flux emergence and coronal eruption , 2010, 1003.2333.

[48]  T. Zurbuchen,et al.  RECONNECTION-DRIVEN DYNAMICS OF CORONAL-HOLE BOUNDARIES , 2009 .

[49]  L. R. V. D. Voort,et al.  Ellerman bombs: fallacies, fads, usage , 2013, 1304.1364.

[50]  Y. Fan THE EMERGENCE OF A TWISTED FLUX TUBE INTO THE SOLAR ATMOSPHERE: SUNSPOT ROTATIONS AND THE FORMATION OF A CORONAL FLUX ROPE , 2009, 0903.1288.

[51]  D. Acheson Instability by magnetic buoyancy , 1979 .

[52]  M. Cheung,et al.  NUMERICAL SIMULATIONS OF ACTIVE REGION SCALE FLUX EMERGENCE: FROM SPOT FORMATION TO DECAY , 2014, 1402.4703.

[53]  P. Démoulin,et al.  Solar filament eruptions and their physical role in triggering Coronal Mass Ejections , 2012, 1212.4014.

[54]  A. M. Title,et al.  SIMULATION OF THE FORMATION OF A SOLAR ACTIVE REGION , 2010, 1006.4117.

[55]  F. Moreno-insertis,et al.  A Three-dimensional Study of Reconnection, Current Sheets, and Jets Resulting from Magnetic Flux Emergence in the Sun , 2004, astro-ph/0410057.

[56]  Manolis K. Georgoulis,et al.  Statistics, Morphology, and Energetics of Ellerman Bombs , 2002 .

[57]  D. Tripathi,et al.  Ellerman Bombs and Jets Associated with Resistive Flux Emergence , 2007 .

[58]  C. Fang,et al.  Numerical simulations of magnetic reconnection in the lower solar atmosphere , 2011 .

[59]  V. Archontis Magnetic flux emergence in the Sun , 2008 .

[60]  T. Yokoyama,et al.  PROBING THE SHALLOW CONVECTION ZONE: RISING MOTION OF SUBSURFACE MAGNETIC FIELDS IN THE SOLAR ACTIVE REGION , 2013, 1305.3023.

[61]  S. Solanki,et al.  Magnetic structures of an emerging flux region in the solar photosphere and chromosphere , 2010 .

[62]  G. Aulanier,et al.  A RECONNECTION-DRIVEN RAREFACTION WAVE MODEL FOR CORONAL OUTFLOWS , 2011 .

[63]  F. Moreno-insertis,et al.  The emergence of toroidal flux tubes from beneath the solar photosphere , 2009 .

[64]  S. V. Dom'inguez,et al.  Recurrent coronal jets induced by repetitively accumulated electric currents , 2013, 1305.0902.

[65]  P. Chatterjee,et al.  SIMULATION OF HOMOLOGOUS AND CANNIBALISTIC CORONAL MASS EJECTIONS PRODUCED BY THE EMERGENCE OF A TWISTED FLUX ROPE INTO THE SOLAR CORONA , 2013, 1309.4785.

[66]  H. Spruit Pressure equilibrium and energy balance of small photospheric fluxtubes , 1976 .

[67]  A. Brun,et al.  THREE-DIMENSIONAL NONLINEAR EVOLUTION OF A MAGNETIC FLUX TUBE IN A SPHERICAL SHELL: INFLUENCE OF TURBULENT CONVECTION AND ASSOCIATED MEAN FLOWS , 2009, 0907.2131.

[68]  K. L. Harvey,et al.  Observations of moving magnetic features near sunspots , 1973 .

[69]  A. Berlicki,et al.  Observations and NLTE modeling of Ellerman bombs , 2014, 1406.5702.

[70]  D. Rust,et al.  Resistive Emergence of Undulatory Flux Tubes , 2004 .

[71]  L. Driel-Gesztelyi,et al.  Magnetic Flux Emergence, Activity, Eruptions and Magnetic Clouds: Following Magnetic Field from the Sun to the Heliosphere , 2009 .

[72]  V. Archontis,et al.  Modelling magnetic flux emergence in the solar convection zone , 2012, 1208.1667.

[73]  S. Solanki,et al.  The Frontier between Small-scale Bipoles and Ephemeral Regions in the Solar Photosphere: Emergence and Decay of an Intermediate-scale Bipole Observed with SUNRISE/IMaX , 2011, 1110.1405.

[74]  F. Moreno-insertis,et al.  Emergence of magnetic flux from the convection zone into the corona , 2004 .

[75]  Alan M. Title,et al.  PHENOMENA IN AN EMERGING ACTIVE REGION. I. HORIZONTAL DYNAMICS , 1996 .

[76]  F. Moreno-insertis,et al.  Jets in Coronal Holes: Hinode Observations and Three-dimensional Computer Modeling , 2007, 0712.1059.

[77]  A. Hood,et al.  Formation of Ellerman bombs due to 3D flux emergence , 2009 .

[78]  R. Seguin,et al.  The Interface Region Imaging Spectrograph (IRIS) , 2012, 1401.2491.

[79]  R. Pinto,et al.  COUPLING THE SOLAR DYNAMO AND THE CORONA: WIND PROPERTIES, MASS, AND MOMENTUM LOSSES DURING AN ACTIVITY CYCLE , 2011, 1106.0882.

[80]  J. Leake,et al.  SIMULATIONS OF EMERGING MAGNETIC FLUX. I. THE FORMATION OF STABLE CORONAL FLUX ROPES , 2013, 1308.6204.

[81]  N. Weiss,et al.  Convection-driven Emergence of Small-Scale Magnetic Fields and their Role in Coronal Heating and Solar Wind Acceleration , 2008 .

[82]  B. Schmieder,et al.  Arch Filament Systems Associated with X-Ray Loops , 1998 .

[83]  F. Ellerman Solar Hydrogen "bombs" , 1917 .

[84]  A. Hood,et al.  Magnetic flux emergence: a precursor of solar plasma expulsion , 2012 .

[85]  G. Aulanier,et al.  CURRENT BUILDUP IN EMERGING SERPENTINE FLUX TUBES , 2009 .

[86]  F. Moreno-insertis,et al.  PLASMA JETS AND ERUPTIONS IN SOLAR CORONAL HOLES: A THREE-DIMENSIONAL FLUX EMERGENCE EXPERIMENT , 2013, 1305.2201.

[87]  Yuhong Fan Magnetic Fields in the Solar Convection Zone , 2004 .

[88]  K. Shibata,et al.  Small-Scale Magnetic-Flux Emergence Observed with Hinode Solar Optical Telescope , 2007, 0709.3207.

[89]  Spectro-Polarimetric Observations and Non-Lte Modeling of Ellerman Bombs , 2005, astro-ph/0508667.

[90]  M. Carlsson,et al.  TWISTED FLUX TUBE EMERGENCE FROM THE CONVECTION ZONE TO THE CORONA. II. LATER STATES , 2009 .

[91]  Haiyang Li,et al.  EVIDENCE FOR A PRE-ERUPTIVE TWISTED FLUX ROPE USING THE THEMIS VECTOR MAGNETOGRAPH , 2009 .

[92]  Å. Nordlund,et al.  ON THE FORMATION OF ACTIVE REGIONS , 2012, 1207.4248.

[93]  S. Antiochos,et al.  THREE-DIMENSIONAL MODELING OF QUASI-HOMOLOGOUS SOLAR JETS , 2010 .

[94]  K. Tsinganos,et al.  Observations and 3D MHD simulations of a solar active region jet , 2009 .

[95]  L. H. M. Rouppe van der Voort,et al.  ELLERMAN BOMBS AT HIGH RESOLUTION. II. TRIGGERING, VISIBILITY, AND EFFECT ON UPPER ATMOSPHERE , 2013, 1307.1547.

[96]  L. Driel-Gesztelyi,et al.  Nonlinear Force-Free Extrapolation of Emerging Flux with a Global Twist and Serpentine Fine Structures , 2012 .

[97]  L. Driel-Gesztelyi,et al.  The 3D Geometry of Active Region Upflows Deduced from Their Limb-to-Limb Evolution , 2012, 1211.5962.

[98]  L. Driel-Gesztelyi,et al.  The Creation of Outflowing Plasma in the Corona at Emerging Flux Regions: Comparing Observations and Simulations , 2012 .

[99]  B. Schmieder,et al.  Evidence of Magnetic Helicity in Emerging Flux and Associated Flare , 2009, 0906.1210.

[100]  B. Schmieder,et al.  MAGNETIC TOPOLOGY OF BUBBLES IN QUIESCENT PROMINENCES , 2012 .

[101]  Eric Ronald Priest,et al.  An emerging flux model for the solar flare phenomenon , 1977 .

[102]  E. Parker Nanoflares and the solar X-ray corona , 1988 .

[103]  T. Nakamura,et al.  Giant Chromospheric Anemone Jet Observed with Hinode and Comparison with Magnetohydrodynamic Simulations: Evidence of Propagating Alfvén Waves and Magnetic Reconnection , 2008, 0810.3384.

[104]  Hirohisa Hara,et al.  Observations of X-ray jets with the Yohkoh soft X-ray telescope , 1992 .

[105]  R. Erdélyi,et al.  Statistical Analysis of Small Ellerman Bomb Events , 2013, 1301.1351.

[106]  Hui Li,et al.  DRIVING MECHANISM AND ONSET CONDITION OF A CONFINED ERUPTION , 2010 .