Fast image registration for multisensor fusion using graphics hardware

This paper presents a fast image registration using graphics hardware for image fusion of high resolution aerial images taken by different sensors. The GPU (Graphics Processing Unit) provides high-performance compared to its price and executes rapid computation by supporting parallel architectures. Fast image registration should be gone ahead to execute high-speed fusion of high resolution aerial images. Our approach is based on clustering techniques using parameter space, but we estimate the number of feature consensus pairs in the feature space according to change of parameter values instead of conversion over the parameter space. To extract feature points, we modified the filter which has been used for TNO fusion method based on image information and frequency. Furthermore, we reduce the search range of mapping parameters, and utilize multi-resolution methods to alleviate high computational cost.We implemented all processes for automatic image registration on programmable graphics hardware, the speed of GPU-based registration increased double compared to CPUpsilas.

[1]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .

[2]  Jens H. Krüger,et al.  A Survey of General‐Purpose Computation on Graphics Hardware , 2007, Eurographics.

[3]  Francis K. H. Quek,et al.  Automatic Aerial Image RegistrationWithout Correspondence , 2006, Fourth IEEE International Conference on Computer Vision Systems (ICVS'06).

[4]  A. Ardeshir Goshtasby,et al.  Point pattern matching using convex hull edges , 1985, IEEE Transactions on Systems, Man, and Cybernetics.

[5]  Jong Beom Ra,et al.  Robust multi-sensor image registration by enhancing statistical correlation , 2005, 2005 7th International Conference on Information Fusion.

[6]  Matt Pharr,et al.  Gpu gems 2: programming techniques for high-performance graphics and general-purpose computation , 2005 .

[7]  P. Anandan,et al.  Robust multi-sensor image alignment , 1998, Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271).

[9]  Randima Fernando,et al.  The CG Tutorial: The Definitive Guide to Programmable Real-Time Graphics , 2003 .

[10]  Cornwall Efficent multiple pass, multiple output algorithms on the GPU , 2006 .

[11]  Andrew Chi-Sing Leung,et al.  Discrete Wavelet Transform on Consumer-Level Graphics Hardware , 2007, IEEE Transactions on Multimedia.

[12]  Alexander Toet,et al.  Merging thermal and visual images by a contrast pyramid , 1989 .

[13]  Francisco Tirado,et al.  Parallel Implementation of the 2D Discrete Wavelet Transform on Graphics Processing Units: Filter Bank versus Lifting , 2008, IEEE Transactions on Parallel and Distributed Systems.

[14]  Fang-Hsuan Cheng,et al.  Fast algorithm for point pattern matching: Invariant to translations, rotations and scale changes , 1997, Pattern Recognit..

[15]  George C. Stockman,et al.  Matching Images to Models for Registration and Object Detection via Clustering , 1982, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[16]  Gunilla Borgefors,et al.  Hierarchical Chamfer Matching: A Parametric Edge Matching Algorithm , 1988, IEEE Trans. Pattern Anal. Mach. Intell..

[17]  Hui Li,et al.  Automatic EO/IR sensor image registration , 1995, Proceedings., International Conference on Image Processing.

[18]  Robert C. Bolles,et al.  Parametric Correspondence and Chamfer Matching: Two New Techniques for Image Matching , 1977, IJCAI.

[19]  Kidiyo Kpalma,et al.  An automatic image registration for applications in remote sensing , 2005, IEEE Transactions on Geoscience and Remote Sensing.

[20]  Jan Flusser,et al.  Image registration methods: a survey , 2003, Image Vis. Comput..