Transmit Waveform Design for Coexisting Radar and Communications Systems

In recent years, there has been an increased interest in sharing available bandwidth to avoid spectrum congestion. With an ever-increasing number of wireless users, it is critical to develop signal processing based spectrum sharing algorithms to achieve cooperative use of the allocated spectrum among multiple systems in order to reduce interference between systems. This work studies the radar and communications systems coexistence problem using two main approaches. The first approach develops methodologies to increase radar target tracking performance under low signal-tointerference-plus-noise ratio (SINR) conditions due to the coexistence of strong communications interference. The second approach jointly optimizes the performance of both systems by co-designing a common transmit waveform. When concentrating on improving radar tracking performance, a pulsed radar that is tracking a single target coexisting with high powered communications interference is considered. Although the Cramér-Rao lower bound (CRLB) on the covariance of an unbiased estimator of deterministic parameters provides a bound on the estimation mean squared error (MSE), there exists an SINR threshold at which estimator covariance rapidly deviates from the CRLB. After demonstrating that different radar waveforms experience different estimation SINR thresholds using the Barankin bound (BB), a new radar waveform design method is proposed based on predicting the waveform-dependent BB SINR threshold under low SINR operating conditions. A novel method of predicting the SINR threshold value for maximum likelihood estimation (MLE) is proposed. A relationship is shown to exist between the formulation of the BB kernel and the probability of selecting sidelobes for the MLE. This relationship is demonstrated as an accurate means of threshold prediction for the radar target parameter estimation of frequency, time-delay and angle-of-arrival. For the co-design radar and communications system problem, the use of a common

[1]  R. Cager,et al.  Orbiter Ku-Band Integrated Radar and Communications Subsystem , 1978, IEEE Trans. Commun..

[2]  Steven Kay,et al.  Fundamentals Of Statistical Signal Processing , 2001 .

[3]  A. Aubry,et al.  Cognitive radar waveform design for spectral coexistence in signal-dependent interference , 2014, 2014 IEEE Radar Conference.

[4]  Richard O. Lane,et al.  Cognitive Radar: the Knowledge-Aided Fully Adaptive Approach. J. R. Guerci Artech House, 16 Sussex Street, London, SW1V 4RW, UK. 2010. 175pp. Illustrated. £66. ISBN 978-1-59693-364-4. , 2011, The Aeronautical Journal (1968).

[5]  B. Tavli,et al.  Spectrum sharing in radar and wireless communication systems: A review , 2014, 2014 International Conference on Electromagnetics in Advanced Applications (ICEAA).

[6]  F. Athley Threshold region performance of deterministic maximum likelihood DOA estimation of multiple sources , 2002, Conference Record of the Thirty-Sixth Asilomar Conference on Signals, Systems and Computers, 2002..

[7]  Jonathan Schuerger,et al.  Wideband OFDM system for radar and communications , 2009, 2009 IEEE Radar Conference.

[8]  Shannon D. Blunt,et al.  Analysis of symbol-design strategies for intrapulse radar-embedded communications , 2015, IEEE Transactions on Aerospace and Electronic Systems.

[9]  E.R. Brown,et al.  Ultra-Wideband Multifunctional Communications/Radar System , 2007, IEEE Transactions on Microwave Theory and Techniques.

[10]  P. Schultheiss,et al.  Delay estimation using narrow-band processes , 1981 .

[11]  J. Tabrikian,et al.  Barankin bound for range and Doppler estimation using orthogonal signal transmission , 2006, 2006 IEEE Conference on Radar.

[12]  E. Lehmann A General Concept of Unbiasedness , 1951 .

[13]  Mark R. Morelande,et al.  Signal-to-noise ratio threshold effect in track before detect , 2009 .

[14]  P. Swerling Parameter Estimation for Waveforms in Additive Gaussian Noise , 1959 .

[15]  Daniel W. Bliss,et al.  Waveform selection for range and Doppler estimation via Barankin bound signal-to-noise ratio threshold , 2014, 2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[16]  Kathryn A. Dowsland,et al.  Simulated Annealing , 1989, Encyclopedia of GIS.

[17]  M.A. Neifeld,et al.  Adaptive Waveform Design and Sequential Hypothesis Testing for Target Recognition With Active Sensors , 2007, IEEE Journal of Selected Topics in Signal Processing.

[18]  J. S. Abel A bound on mean square estimate error , 1990, International Conference on Acoustics, Speech, and Signal Processing.

[19]  Ram M. Narayanan,et al.  Bandwidth sharing and scheduling for multimodal radar with communications and tracking , 2012, 2012 IEEE 7th Sensor Array and Multichannel Signal Processing Workshop (SAM).

[20]  J. Tabrikian,et al.  A new lower bound based on weighted fourier transform of the likelihood ratio function , 2008, 2008 5th IEEE Sensor Array and Multichannel Signal Processing Workshop.

[21]  E.R. Brown,et al.  Integrated radar and communications based on chirped spread-spectrum techniques , 2003, IEEE MTT-S International Microwave Symposium Digest, 2003.

[22]  Pascal Larzabal,et al.  From Chapman-Robbins bound towards Barankin bound in threshold behaviour prediction , 2004 .

[23]  Yonina C. Eldar,et al.  Unbiased Estimation of a Sparse Vector in White Gaussian Noise , 2010, IEEE Transactions on Information Theory.

[24]  Christ D. Richmond,et al.  Capon algorithm mean-squared error threshold SNR prediction and probability of resolution , 2005, IEEE Transactions on Signal Processing.

[25]  Joseph Tabrikian,et al.  General Classes of Performance Lower Bounds for Parameter Estimation—Part I: Non-Bayesian Bounds for Unbiased Estimators , 2010, IEEE Transactions on Information Theory.

[26]  Yuanwei Jin,et al.  A joint design of transmit waveforms for radar and communications systems in coexistence , 2014, 2014 IEEE Radar Conference.

[27]  Theodore S. Rappaport,et al.  Wireless communications - principles and practice , 1996 .

[28]  Lixin Ye,et al.  Assessing the potential for spectrum sharing between communications and radar systems in the L-band portion of the RF spectrum allocated to radar , 2014, 2014 International Conference on Electromagnetics in Advanced Applications (ICEAA).

[29]  Wei Zhang,et al.  A power-efficient radar waveform compatible with communication , 2013, 2013 International Conference on Communications, Circuits and Systems (ICCCAS).

[30]  Daniel W. Bliss,et al.  Adaptive Wireless Communications: Index , 2013 .

[31]  Urbashi Mitra,et al.  Opportunistic Radar Waveform Design in Joint Radar and Cellular Communication Systems , 2014, 2015 IEEE Global Communications Conference (GLOBECOM).

[32]  Ariela Zeira,et al.  Realizable lower bounds for time delay estimation , 1993, IEEE Trans. Signal Process..

[33]  Daniel W. Bliss,et al.  Mean-Squared-Error Prediction for Bayesian Direction-of-Arrival Estimation , 2013, IEEE Transactions on Signal Processing.

[34]  Jeffrey L. Krolik,et al.  Barankin bounds for source localization in an uncertain ocean environment , 1999, IEEE Trans. Signal Process..

[35]  Audra E. Kosh,et al.  Linear Algebra and its Applications , 1992 .

[36]  Stephen Berger Spectrum congestion - Is it a technical problem? , 2014, 2014 United States National Committee of URSI National Radio Science Meeting (USNC-URSI NRSM).

[37]  Ahmed Abdel-Hadi,et al.  Overlapped-MIMO radar waveform design for coexistence with communication systems , 2015, 2015 IEEE Wireless Communications and Networking Conference (WCNC).

[38]  S. Haykin,et al.  Cognitive radar: a way of the future , 2006, IEEE Signal Processing Magazine.

[39]  Neil J. Gordon,et al.  A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking , 2002, IEEE Trans. Signal Process..

[40]  Darryl Morrell,et al.  Dynamic Configuration of Time-Varying Waveforms for Agile Sensing and Tracking in Clutter , 2007, IEEE Transactions on Signal Processing.

[41]  Philippe Forster,et al.  On lower bounds for deterministic parameter estimation , 2002, 2002 IEEE International Conference on Acoustics, Speech, and Signal Processing.

[42]  Stephen P. Boyd,et al.  Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.

[43]  Kristine L. Bell,et al.  Threshold Region Performance of Maximum Likelihood Direction of Arrival Estimators , 2007 .

[44]  Harry L. Van Trees,et al.  Detection, Estimation, and Modulation Theory: Radar-Sonar Signal Processing and Gaussian Signals in Noise , 1992 .

[45]  Steffen Heuel,et al.  Coexistence of S-Band radar and 4G mobile networks , 2014, 2014 15th International Radar Symposium (IRS).

[46]  J. R. Guerci,et al.  Joint design and operation of shared spectrum access for radar and communications , 2015, 2015 IEEE Radar Conference (RadarCon).

[47]  Alex R. Chiriyath,et al.  Joint radar-communications performance bounds: Data versus estimation information rates , 2015, MILCOM 2015 - 2015 IEEE Military Communications Conference.

[48]  Steven Kay,et al.  Agile multi-modal tracking with dependent measurements , 2010, 2010 Conference Record of the Forty Fourth Asilomar Conference on Signals, Systems and Computers.

[49]  E. Barankin Locally Best Unbiased Estimates , 1949 .

[50]  Hao Shen,et al.  Diversity and channel estimation using time-varying signals and time-frequency techniques , 2006, IEEE Transactions on Signal Processing.

[51]  Daniel W. Bliss,et al.  Cooperative radar and communications signaling: The estimation and information theory odd couple , 2014, 2014 IEEE Radar Conference.

[52]  Simon Haykin,et al.  Cognitive Dynamic Systems: Perception-action Cycle, Radar and Radio , 2012 .

[53]  Peter Rossmanith,et al.  Simulated Annealing , 2008, Taschenbuch der Algorithmen.

[54]  Joseph Tabrikian,et al.  On the limitations of Barankin type bounds for MLE threshold prediction , 2015, Signal Process..

[55]  Yimin Zhang,et al.  Dual-Function Radar-Communications: Information Embedding Using Sidelobe Control and Waveform Diversity , 2016, IEEE Transactions on Signal Processing.

[56]  Christ D. Richmond,et al.  Mean-squared error and threshold SNR prediction of maximum-likelihood signal parameter estimation with estimated colored noise covariances , 2006, IEEE Transactions on Information Theory.

[57]  Michael C. Wicks,et al.  Distributed apertures for robustness in radar and communications (DARRC) , 2015, 2015 IEEE Radar Conference (RadarCon).

[58]  Alexander Jung,et al.  Minimum variance estimation for the sparse signal in noise model , 2011, 2011 IEEE International Symposium on Information Theory Proceedings.

[59]  Arye Nehorai,et al.  Waveform-Agile Sensing and Processing [From the Guest Editors] , 2009 .

[60]  Wei Zhang,et al.  Study on integrated radar-communication signal of OFDM-LFM based on FRFT , 2015 .

[61]  Wen Xu,et al.  Understanding the method of interval errors from the information theory perspective , 2009, 2009 IEEE International Conference on Acoustics, Speech and Signal Processing.

[62]  Thomas Zwick,et al.  An OFDM System Concept for Joint Radar and Communications Operations , 2009, VTC Spring 2009 - IEEE 69th Vehicular Technology Conference.

[63]  S. Haykin,et al.  Optimal waveform design for cognitive radar , 2008, 2008 42nd Asilomar Conference on Signals, Systems and Computers.

[64]  Tao Li,et al.  A Barankin-Type Bound on Direction Estimation Using Acoustic Sensor Arrays , 2011, IEEE Transactions on Signal Processing.

[65]  Lawrence P. Seidman,et al.  A useful form of the Barankin lower bound and its application to PPM threshold analysis , 1969, IEEE Trans. Inf. Theory.

[66]  Branko Ristic,et al.  Beyond the Kalman Filter: Particle Filters for Tracking Applications , 2004 .

[67]  D. Erricolo,et al.  Results on spectrum sharing between a radar and a communications system , 2014, 2014 International Conference on Electromagnetics in Advanced Applications (ICEAA).

[68]  Christian Sturm,et al.  Deterministic propagation modeling for joint radar and communication systems , 2010, 2010 URSI International Symposium on Electromagnetic Theory.

[70]  Edward M. Hofstetter,et al.  Barankin Bounds on Parameter Estimation , 1971, IEEE Trans. Inf. Theory.

[71]  Hao Shen,et al.  Multi-user schemes using nonlinear time-varying modulation , 2004, 2004 IEEE International Conference on Acoustics, Speech, and Signal Processing.

[72]  Thomas Kailath,et al.  RKHS approach to detection and estimation problems-V: Parameter estimation , 1973, IEEE Trans. Inf. Theory.

[73]  J. R. Guerci,et al.  RAST: Radar as a subscriber technology for wireless spectrum cohabitation , 2014, 2014 IEEE Radar Conference.

[74]  Michael Inggs,et al.  White space symbiotic radar: A new scheme for coexistence of radio communications and radar , 2015, 2015 IEEE Radar Conference.

[75]  Philipp Birken,et al.  Numerical Linear Algebra , 2011, Encyclopedia of Parallel Computing.

[76]  Bryan Paul,et al.  Inner Bounds on Performance of Radar and Communications Co-Existence , 2016, IEEE Transactions on Signal Processing.

[77]  Dusan Jokanovic,et al.  RF spectrum congestion: Resolving an interference case , 2011, 2011 IEEE International Conference on Microwaves, Communications, Antennas and Electronic Systems (COMCAS 2011).

[78]  Hiroshi Takase,et al.  A dual-use radar and communication system with complete complementary codes , 2014, 2014 15th International Radar Symposium (IRS).

[79]  Antonia Papandreou-Suppappola,et al.  Applications in Time-Frequency Signal Processing , 2002 .

[80]  Xiaoli Ma,et al.  Performance bounds for an OFDM-based joint radar and communications system , 2015, MILCOM 2015 - 2015 IEEE Military Communications Conference.

[81]  H. V. Trees,et al.  Bayesian Bounds for Parameter Estimation and Nonlinear Filtering/Tracking , 2007 .

[82]  Aaron D. Lanterman,et al.  Performance of a joint radar-communication system in doubly-selective channels , 2015, 2015 49th Asilomar Conference on Signals, Systems and Computers.

[83]  Hao Shen,et al.  Time-varying multichirp rate modulation for multiple access systems , 2004, IEEE Signal Processing Letters.

[84]  Muralidhar Rangaswamy,et al.  A novel approach for designing diversity radar waveforms that are orthogonal on both transmit and receive , 2013, 2013 IEEE Radar Conference (RadarCon13).

[85]  Luc Knockaert,et al.  The Barankin bound and threshold behavior in frequency estimation , 1997, IEEE Trans. Signal Process..

[86]  Defu Jiang,et al.  A novel integrated radar and communication waveform based on LFM signal , 2015, 2015 IEEE 5th International Conference on Electronics Information and Emergency Communication.

[87]  D.W. Bliss,et al.  MIMO Radar: Joint Array And Waveform Optimization , 2007, 2007 Conference Record of the Forty-First Asilomar Conference on Signals, Systems and Computers.

[88]  José Paulo A. Albuquerque The Barankin bound: A geometric interpretation (Corresp.) , 1973, IEEE Trans. Inf. Theory.

[89]  Eric Chaumette,et al.  A Direct Method to Generate Approximations of the Barankin Bound , 2006, 2006 IEEE International Conference on Acoustics Speech and Signal Processing Proceedings.

[90]  S. Kay Fundamentals of statistical signal processing: estimation theory , 1993 .

[91]  Eric Chaumette,et al.  A New Barankin Bound Approximation for the Prediction of the Threshold Region Performance of Maximum Likelihood Estimators , 2008, IEEE Transactions on Signal Processing.