CSI 2264: CHARACTERIZING ACCRETION-BURST DOMINATED LIGHT CURVES FOR YOUNG STARS IN NGC 2264

Based on more than four weeks of continuous high-cadence photometric monitoring of several hundred members of the young cluster NGC 2264 with two space telescopes, NASA's Spitzer and the CNES CoRoT (Convection, Rotation, and planetary Transits), we provide high-quality, multi-wavelength light curves for young stellar objects whose optical variability is dominated by short-duration flux bursts, which we infer are due to enhanced mass accretion rates. These light curves show many brief—several hours to one day—brightenings at optical and near-infrared wavelengths with amplitudes generally in the range of 5%–50% of the quiescent value. Typically, a dozen or more of these bursts occur in a 30 day period. We demonstrate that stars exhibiting this type of variability have large ultraviolet (UV) excesses and dominate the portion of the u − g versus g − r color–color diagram with the largest UV excesses. These stars also have large Hα equivalent widths, and either centrally peaked, lumpy Hα emission profiles or profiles with blueshifted absorption dips associated with disk or stellar winds. Light curves of this type have been predicted for stars whose accretion is dominated by Rayleigh–Taylor instabilities at the boundary between their magnetosphere and inner circumstellar disk, or where magneto-rotational instabilities modulate the accretion rate from the inner disk. Among the stars with the largest UV excesses or largest Hα equivalent widths, light curves with this type of variability greatly outnumber light curves with relatively smooth sinusoidal variations associated with long-lived hot spots. We provide quantitative statistics for the average duration and strength of the accretion bursts and for the fraction of the accretion luminosity associated with these bursts.

[1]  E. Feigelson,et al.  OVERVIEW OF THE MASSIVE YOUNG STAR-FORMING COMPLEX STUDY IN INFRARED AND X-RAY (MYStIX) PROJECT , 2013, 1309.4483.

[2]  M. Wolff,et al.  THREE-DIMENSIONAL RADIATION TRANSFER IN YOUNG STELLAR OBJECTS , 2013, 1307.0561.

[3]  A. Weiss,et al.  STELLAR AGES AND CONVECTIVE CORES IN FIELD MAIN-SEQUENCE STARS: FIRST ASTEROSEISMIC APPLICATION TO TWO KEPLER TARGETS , 2013, 1304.2772.

[4]  M. Romanova,et al.  ERRATUM: “LOCKING OF THE ROTATION OF DISK-ACCRETING MAGNETIZED STARS” (2005, ApJ, 634, 1214) , 2013 .

[5]  F. Favata,et al.  Rotation in NGC 2264: a study based on CoRoT photometric observations , 2013, 1301.1856.

[6]  F. Fressin,et al.  THE FALSE POSITIVE RATE OF KEPLER AND THE OCCURRENCE OF PLANETS , 2013, 1301.0842.

[7]  R. Kurosawa,et al.  Spectral variability of classical T Tauri stars accreting in an unstable regime , 2013, 1301.0641.

[8]  H. Shang,et al.  MAGNETOSPHERIC ACCRETION AND EJECTION OF MATTER IN RESISTIVE MAGNETOHYDRODYNAMIC SIMULATIONS , 2011, 1112.6226.

[9]  C. Lada,et al.  Spitzer observations of NGC 2264: the nature of the disk population , 2012, 1203.3754.

[10]  Princeton,et al.  General relativistic magnetohydrodynamic simulations of magnetically choked accretion flows around black holes , 2012, 1201.4163.

[11]  N. Calvet,et al.  ON THE TRANSITIONAL DISK CLASS: LINKING OBSERVATIONS OF T TAURI STARS AND PHYSICAL DISK MODELS , 2012, 1201.1518.

[12]  H. Safari,et al.  CAN A NANOFLARE MODEL OF EXTREME-ULTRAVIOLET IRRADIANCES DESCRIBE THE HEATING OF THE SOLAR CORONA? , 2011, 1112.4926.

[13]  Harland W. Epps,et al.  Hectochelle: A Multiobject Optical Echelle Spectrograph for the MMT , 2011 .

[14]  H. C. Stempels,et al.  Accretion-powered chromospheres in classical T Tauri stars , 2011, 1109.1266.

[15]  A. F. Lanza,et al.  Time evolution and rotation of starspots on CoRoT-2 from the modelling of transit photometry , 2011, 1102.2192.

[16]  G. Pojmański,et al.  Analysis of variability of TW Hya as observed by MOST and ASAS in 2009 , 2010, 1009.1173.

[17]  L. Hartmann,et al.  Modeling the Hα line emission around classical T Tauri stars using magnetospheric accretion and disk wind models , 2010, 1007.3976.

[18]  F. Favata,et al.  Accretion dynamics and disk evolution in NGC 2264: a study based on the Corot photometric observations , 2010, 1005.4384.

[19]  K. Covey,et al.  THE DISTANCE TO NGC 2264 , 2009, 0907.3139.

[20]  M. Bessell,et al.  A SPITZER VIEW OF THE YOUNG OPEN CLUSTER NGC 2264 , 2009, 0906.3072.

[21]  D. Sasselov,et al.  Photometric variability of the T Tauri star TW Hya on time-scales of hours to years* , 2008, 0809.3987.

[22]  M. Romanova,et al.  Accretion to magnetized stars through the Rayleigh–Taylor instability: global 3D simulations , 2008, 0802.1759.

[23]  M. Bessell,et al.  THE INITIAL MASS FUNCTION AND YOUNG BROWN DWARF CANDIDATES IN NGC 2264. III. PHOTOMETRIC DATA , 2008 .

[24]  L. Hartmann,et al.  On the Diversity of the Taurus Transitional Disks: UX Tauri A and LkCa 15 , 2007, 0710.2892.

[25]  S. Hodgkin,et al.  Magnetospheric accretion-ejection processes in the classical T Tauri star AA Tauri , 2006, astro-ph/0611787.

[26]  D. Fabricant,et al.  Kinematics of NGC 2264: Signs of Cluster Formation , 2006, 0711.0380.

[27]  S. Littlefair,et al.  Radial and rotational velocities of young brown dwarfs and very low-mass stars in the Upper Scorpius OB association and the ρ Ophiuchi cloud core , 2006, astro-ph/0609053.

[28]  S. E. Persson,et al.  Spitzer and Magellan Observations of NGC 2264: A Remarkable Star-forming Core near IRS 2 , 2006, astro-ph/0601300.

[29]  G. Rieke,et al.  Identifying Primordial Substructure in NGC 2264 , 2005, The Astrophysical Journal.

[30]  T. Simon,et al.  The T Tauri Star Population of the Young Cluster NGC 2264 , 2005 .

[31]  G. Fazio,et al.  Infrared Array Camera (IRAC) Colors of Young Stellar Objects , 2004 .

[32]  E. Wright,et al.  The Spitzer Space Telescope Mission , 2004, astro-ph/0406223.

[33]  Gary J. Melnick,et al.  In-flight performance and calibration of the Infrared Array Camera (IRAC) for the Spitzer Space Telescope , 2004, SPIE Astronomical Telescopes + Instrumentation.

[34]  R. Makidon,et al.  Periodic Variability of Pre-Main-Sequence Stars in the NGC 2264 OB Association , 2004 .

[35]  Heidelberg,et al.  A rotational and variability study of a large sample of PMS stars in NGC 2264 , 2004, astro-ph/0402188.

[36]  Gordon A. H. Walker,et al.  The MOST Asteroseismology Mission: Ultraprecise Photometry from Space , 2003 .

[37]  Tony Farrell,et al.  Installation and Commissioning of FLAMES, the VLT Multifibre Facility , 2002 .

[38]  L. Hillenbrand,et al.  Circumstellar Disk Candidates Identified in NGC 2264 , 2002 .

[39]  M. Bessell,et al.  The Pre-Main-Sequence Stars and Initial Mass Function of NGC 2264 , 2000 .

[40]  Brazil.,et al.  Profiles of Strong Permitted Lines in Classical T Tauri Stars , 2000, astro-ph/0001322.

[41]  G. Basri,et al.  Accretion-induced Lithium Line Enhancements in Classical T Tauri Stars: RW Aurigae , 1999, astro-ph/9911508.

[42]  L. Hillenbrand,et al.  Rotation in the Orion Nebula Cluster , 1999, astro-ph/9909427.

[43]  D. Soderblom,et al.  Evolution Of The Lithium Abundances Of Solar-Type Stars. IX. High-Resolution Spectroscopy of Low-Mass Stars in NGC 2264 , 1999 .

[44]  Keivan G. Stassun,et al.  The Rotation Period Distribution of Pre-Main-Sequence Stars in and around the Orion Nebula , 1999 .

[45]  B. Reipurth,et al.  H emission in pre-main sequence stars. I. An atlas of line profiles , 1996 .

[46]  William Herbst,et al.  Catalogue of UBVRI photometry of T Tauri stars and analysis of the causes of their variability , 1994 .

[47]  H. Hudson Solar flares, microflares, nanoflares, and coronal heating , 1991 .

[48]  L. Hartmann,et al.  Optical veiling, disk accretion, and the evolution of T Tauri stars , 1990 .

[49]  C. Bertout,et al.  Accretion Disks around T Tauri Stars , 1988 .