Effectively closed sets and enumerations
暂无分享,去创建一个
[1] Douglas Cenzer,et al. Countable Thin Pi01 Classes , 1993, Ann. Pure Appl. Log..
[2] Douglas Cenzer. ∏10 Classes in Computability Theory , 1999, Handbook of Computability Theory.
[3] Steffen Lempp,et al. Friedberg Numberings of Families of n-Computably Enumerable Sets , 2002 .
[4] Yuri L. Ershov,et al. Theory of Numberings , 1999, Handbook of Computability Theory.
[5] Stephen G. Simpson. Mass problems and randomness , 2005, Bull. Symb. Log..
[6] Paul Brodhead. Enumerations of Pi10 Classes: Acceptability and Decidable Classes , 2007, Electron. Notes Theor. Comput. Sci..
[7] Peter A. Cholak,et al. Automorphisms of the lattice of Π₁⁰ classes; perfect thin classes and anc degrees , 2001 .
[8] Paul Brodhead. Computable aspects of closed sets , 2008 .
[9] S. Shelah,et al. Annals of Pure and Applied Logic , 1991 .
[10] P. Odifreddi. Classical recursion theory , 1989 .
[11] Jr. Hartley Rogers. Theory of Recursive Functions and Effective Computability , 1969 .
[12] R. Soare. Recursively enumerable sets and degrees , 1987 .
[13] R. Soare,et al. Π⁰₁ classes and degrees of theories , 1972 .
[14] Alexander Raichev. RELATIVE RANDOMNESS VIA RK-REDUCIBILITY , 2006 .
[15] Zofia Adamowicz. On Maximal Theories , 1991, J. Symb. Log..
[16] Anil Nerode,et al. Handbook of Recursive Mathematics , 1998 .
[17] Douglas A. Cenzer,et al. Index Sets for Pi01 Classes , 1998, Ann. Pure Appl. Log..
[18] H. Putnam,et al. Recursively enumerable classes and their application to recursive sequences of formal theories , 1965 .
[19] Rodney G. Downey,et al. Algorithmic Randomness and Complexity , 2010, Theory and Applications of Computability.
[20] S. Lempp. Hyperarithmetical index sets in recursion theory , 1987 .
[21] Edward R. Griffor. Handbook of Computability Theory , 1999, Handbook of Computability Theory.
[22] Hartley Rogers,et al. Gödel numberings of partial recursive functions , 1958, Journal of Symbolic Logic.
[23] Stephen Binns,et al. Small Π01 Classes , 2006, Arch. Math. Log..
[24] Michael Stob,et al. Array nonrecursive sets and multiple permitting arguments , 1990 .
[25] P. Dangerfield. Logic , 1996, Aristotle and the Stoics.
[26] Yoshindo Suzuki,et al. Enumeration of Recursive Sets , 1959, Journal of Symbolic Logic.
[27] Richard M. Friedberg,et al. Three theorems on recursive enumeration. I. Decomposition. II. Maximal set. III. Enumeration without duplication , 1958, Journal of Symbolic Logic.