Effectively closed sets and enumerations

An effectively closed set, or $${\Pi^{0}_{1}}$$ class, may viewed as the set of infinite paths through a computable tree. A numbering, or enumeration, is a map from ω onto a countable collection of objects. One numbering is reducible to another if equality holds after the second is composed with a computable function. Many commonly used numberings of $${\Pi^{0}_{1}}$$ classes are shown to be mutually reducible via a computable permutation. Computable injective numberings are given for the family of $${\Pi^{0}_{1}}$$ classes and for the subclasses of decidable and of homogeneous $${\Pi^{0}_{1}}$$ classes. However no computable numberings exist for small or thin classes. No computable numbering of trees exists that includes all computable trees without dead ends.

[1]  Douglas Cenzer,et al.  Countable Thin Pi01 Classes , 1993, Ann. Pure Appl. Log..

[2]  Douglas Cenzer ∏10 Classes in Computability Theory , 1999, Handbook of Computability Theory.

[3]  Steffen Lempp,et al.  Friedberg Numberings of Families of n-Computably Enumerable Sets , 2002 .

[4]  Yuri L. Ershov,et al.  Theory of Numberings , 1999, Handbook of Computability Theory.

[5]  Stephen G. Simpson Mass problems and randomness , 2005, Bull. Symb. Log..

[6]  Paul Brodhead Enumerations of Pi10 Classes: Acceptability and Decidable Classes , 2007, Electron. Notes Theor. Comput. Sci..

[7]  Peter A. Cholak,et al.  Automorphisms of the lattice of Π₁⁰ classes; perfect thin classes and anc degrees , 2001 .

[8]  Paul Brodhead Computable aspects of closed sets , 2008 .

[9]  S. Shelah,et al.  Annals of Pure and Applied Logic , 1991 .

[10]  P. Odifreddi Classical recursion theory , 1989 .

[11]  Jr. Hartley Rogers Theory of Recursive Functions and Effective Computability , 1969 .

[12]  R. Soare Recursively enumerable sets and degrees , 1987 .

[13]  R. Soare,et al.  Π⁰₁ classes and degrees of theories , 1972 .

[14]  Alexander Raichev RELATIVE RANDOMNESS VIA RK-REDUCIBILITY , 2006 .

[15]  Zofia Adamowicz On Maximal Theories , 1991, J. Symb. Log..

[16]  Anil Nerode,et al.  Handbook of Recursive Mathematics , 1998 .

[17]  Douglas A. Cenzer,et al.  Index Sets for Pi01 Classes , 1998, Ann. Pure Appl. Log..

[18]  H. Putnam,et al.  Recursively enumerable classes and their application to recursive sequences of formal theories , 1965 .

[19]  Rodney G. Downey,et al.  Algorithmic Randomness and Complexity , 2010, Theory and Applications of Computability.

[20]  S. Lempp Hyperarithmetical index sets in recursion theory , 1987 .

[21]  Edward R. Griffor Handbook of Computability Theory , 1999, Handbook of Computability Theory.

[22]  Hartley Rogers,et al.  Gödel numberings of partial recursive functions , 1958, Journal of Symbolic Logic.

[23]  Stephen Binns,et al.  Small Π01 Classes , 2006, Arch. Math. Log..

[24]  Michael Stob,et al.  Array nonrecursive sets and multiple permitting arguments , 1990 .

[25]  P. Dangerfield Logic , 1996, Aristotle and the Stoics.

[26]  Yoshindo Suzuki,et al.  Enumeration of Recursive Sets , 1959, Journal of Symbolic Logic.

[27]  Richard M. Friedberg,et al.  Three theorems on recursive enumeration. I. Decomposition. II. Maximal set. III. Enumeration without duplication , 1958, Journal of Symbolic Logic.