Electromagnetic Field Calculations for Microlens Optical Systems

[1]  Songlin Zhuang,et al.  Analysis of imaging properties of a microlens based on the method for a dyadic Green's function. , 2009, Applied optics.

[2]  F. Okano,et al.  Microlens arrays for integral imaging system. , 2006, Applied optics.

[3]  Raj Mittra,et al.  A combined FEM/MoM approach to analyze the plane wave diffraction by arbitrary gratings , 1992 .

[4]  Generation of an extended depth of focus using diffractive micro-lenses with binary structures in the non-paraxial domain , 2009 .

[5]  Shutian Liu,et al.  Rigorous electromagnetic analysis of dual-closed-surface microlens arrays , 2007 .

[6]  Andreas Tünnermann,et al.  The Gabor superlens as an alternative wafer-level camera approach inspired by superposition compound eyes of nocturnal insects. , 2009, Optics express.

[7]  J. P. Barton,et al.  Internal and near-surface electromagnetic fields for a spheroidal particle with arbitrary illumination. , 1995, Applied optics.

[8]  Neal C. Gallagher,et al.  Numerical modeling of diffractive devices using the finite element method , 1994 .

[9]  Kazuya Kobayashi,et al.  Diffraction of a plane wave by a thick strip grating , 1985 .

[10]  Juan Liu,et al.  Interference effect of dual diffractive cylindrical microlenses analyzed by rigorous electromagnetic theory , 2001 .

[11]  J. Montgomery,et al.  Scattering by an infinite array of multiple parallel strips , 1979 .

[12]  M. P. Givens Focal shifts in diffracted converging spherical waves , 1982 .

[13]  Zhensen Wu,et al.  Absorption and scattering by an oblate particle , 2002 .

[14]  N. Borrelli,et al.  Imaging and radiometric properties of microlens arrays. , 1991, Applied optics.

[15]  Baida Lü,et al.  Improved diffraction integral for studying the diffracted field of a spherical microlens. , 2005, Journal of the Optical Society of America. A, Optics, image science, and vision.

[16]  J. P. Barton,et al.  Electromagnetic field for a beam incident on two adjacent spherical particles. , 1991, Applied optics.

[17]  K. Yee Numerical solution of initial boundary value problems involving maxwell's equations in isotropic media , 1966 .

[18]  M C Hutley,et al.  Imaging properties of the Gabor superlens , 1999 .

[19]  M. Deguchi,et al.  Microlens design using simulation program for CCD image sensor , 1992 .

[20]  Wentao Lu,et al.  Nano-optical microlens with ultrashort focal length using negative refraction , 2008 .

[21]  D. Hodge Eigenvalues and Eigenfunctions of the Spheroidal Wave Equation , 1970 .

[22]  Weng Cho Chew,et al.  A 3D perfectly matched medium from modified maxwell's equations with stretched coordinates , 1994 .

[23]  Juan Liu,et al.  Analysis of the focal characteristics of cylindrical lenses made of anisotropically dielectric material based on rigorous electromagnetic theory , 2003 .

[24]  Shutian Liu,et al.  Focusing performance of the closed-boundary cylindrical microlenses analyzed by the boundary element method , 2006 .

[25]  A. Fletcher,et al.  Spheroidal Wave Functions , 1959 .

[26]  J. P. Barton,et al.  Fifth-order corrected electromagnetic field components for a fundamental Gaussian beam , 1989 .

[27]  Raj Mittra,et al.  Analysis of the electromagnetic scattering by thick gratings using a combined FEM/MM solution , 1991 .

[28]  Joseph E. Ford,et al.  Planar micro-optic solar concentrator. , 2010, Optics express.

[29]  K. Tanaka,et al.  Focusing of a Gaussian beam through a finite aperture lens. , 1985, Applied optics.

[30]  J. H. Wilkinson Calculation of the eigenvalues of a symmetric tridiagonal matrix by the method of bisection , 1962 .

[31]  Thomas K. Gaylord,et al.  Rigorous electromagnetic analysis of diffractive cylindrical lenses , 1996 .

[32]  M C Hutley,et al.  The use of microlenses for making spatially variant optical interconnections , 1992 .

[33]  Hans Peter Herzig,et al.  Microlens systems for fluorescence detection in chemical microsystems , 2001 .

[34]  Herwig Kogelnik,et al.  Laser beams and resonators , 1966 .

[35]  M. Mirotznik,et al.  A hybrid finite element-boundary element method for the analysis of diffractive elements , 1996 .

[36]  D. Prather,et al.  Electromagnetic analysis of axially symmetric diffractive lenses with the method of moments. , 2000, Journal of the Optical Society of America. A, Optics, image science, and vision.

[37]  Luke P. Lee,et al.  Biologically Inspired Artificial Compound Eyes , 2006, Science.

[38]  W. H. Carter,et al.  Focal shift and concept of effective Fresnel number for a Gaussian laser beam. , 1982, Applied optics.

[39]  K. Lee Focusing characteristics of a truncated and aberrated Gaussian beam through a hemispherical microlens. , 1986, Applied optics.

[40]  Andreas Tünnermann,et al.  Microoptical telescope compound eye. , 2005, Optics express.

[41]  Yajun Li,et al.  Focal shift in focused truncated gaussian beams , 1982 .

[42]  Allen Taflove,et al.  Computational Electrodynamics the Finite-Difference Time-Domain Method , 1995 .

[43]  K A Fuller,et al.  Consummate solution to the problem of classical electromagnetic scattering by an ensemble of spheres. I: Linear chains. , 1988, Optics letters.

[44]  B. Dong,et al.  Rigorous electromagnetic analysis of a microcylindrical axilens with long focal depth and high transverse resolution. , 2001, Journal of the Optical Society of America. A, Optics, image science, and vision.

[45]  Guofan Jin,et al.  Axial focusing characteristics of diffractive micro-lenses based on a rigorous electromagnetic theory , 2004 .

[46]  H. S. Hinton,et al.  Optical interconnections using microlens arrays , 1992 .

[47]  Charles A. Bennett Principles of Physical Optics , 2007 .

[48]  V. Yurchenko,et al.  Physical optics modeling of 2D dielectric lenses. , 2009, Journal of the Optical Society of America. A, Optics, image science, and vision.

[49]  Ben-Yuan Gu,et al.  Analysis of a cylindrical microlens array with long focal depth by a rigorous boundary-element method and scalar approximations. , 2004, Applied optics.

[50]  Yi-Pai Huang,et al.  Micro-optics for liquid crystal displays applications , 2005, Journal of Display Technology.

[51]  J. P. Barton Internal and near-surface electromagnetic fields for an absorbing spheroidal particle with arbitrary illumination. , 1995, Applied optics.

[52]  Guy E. Artzner,et al.  Microlens arrays for Shack-Hartmann wavefront sensors , 1992 .

[53]  Jie Lin Effect of illumination types on focusing performance of closed-boundary cylindrical microlenses , 2009 .

[54]  Hamid Reza Fallah,et al.  Design and simulation of a high-resolution superposition compound eye , 2007 .