An Investigation and Extension of a Hyper-heuristic Framework

Three modifications to the framework within which hyper-heuristic approaches operate are presented. The first modification automates a self learning mechanism for updating the values of parameters in the choice function used by the controller. Second, a procedure for dynamically configuring a range of lowlevel heuristics is described. Third, in order to effectively use this range of low-level heuristics the controller is redesigned to form a hierarchy of sub-controllers. The second and third modifications improve the inflexibility associated with having a limited number of low-level heuristics available to the controller. Experiments are used to investigate features of the hyper-heuristic framework and the three modifications including comparisons with previously published results.

[1]  Graham Kendall,et al.  Hyperheuristics: A Robust Optimisation Method Applied to Nurse Scheduling , 2002, PPSN.

[2]  Raymond S. K. Kwan,et al.  Distributed Choice Function Hyper-heuristics for Timetabling and Scheduling , 2004, PATAT.

[3]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[4]  Christos D. Tarantilis,et al.  Minimizing makespan in permutation flow shop scheduling problems using a hybrid metaheuristic algorithm , 2009, Comput. Oper. Res..

[5]  Edmund K. Burke,et al.  A survey of search methodologies and automated system development for examination timetabling , 2009, J. Sched..

[6]  F. Glover,et al.  Handbook of Metaheuristics , 2019, International Series in Operations Research & Management Science.

[7]  Chuliang Weng,et al.  Heuristic scheduling for bag-of-tasks applications in combination with QoS in the computational grid , 2005, Future Gener. Comput. Syst..

[8]  R. Storn,et al.  Differential Evolution: A Practical Approach to Global Optimization (Natural Computing Series) , 2005 .

[9]  Mauro Birattari,et al.  Swarm Intelligence , 2012, Lecture Notes in Computer Science.

[10]  Graham Kendall,et al.  A Hyperheuristic Approach to Scheduling a Sales Summit , 2000, PATAT.

[11]  Samuel Karlin,et al.  A First Course on Stochastic Processes , 1968 .

[12]  Goldberg,et al.  Genetic algorithms , 1993, Robust Control Systems with Genetic Algorithms.

[13]  Fred Glover,et al.  Tabu Search - Part II , 1989, INFORMS J. Comput..

[14]  Sanja Petrovic,et al.  A graph-based hyper-heuristic for educational timetabling problems , 2007, Eur. J. Oper. Res..

[15]  A. Najafi,et al.  A Priority Rule-Based Heuristic for Resource Investment Project Scheduling Problem with Discounted Cash Flows and Tardiness Penalties , 2009 .

[16]  Ashraf Elazouni Heuristic method for multi‐project finance‐based scheduling , 2009 .

[17]  Fred W. Glover,et al.  Tabu Search - Part I , 1989, INFORMS J. Comput..

[18]  Sanja Petrovic,et al.  Case-based heuristic selection for timetabling problems , 2006, J. Sched..

[19]  Barry McCollum A Perspective on Bridging the Gap in University Timetabling , 2007 .

[20]  Graham Kendall,et al.  Hyperheuristics: A Tool for Rapid Prototyping in Scheduling and Optimisation , 2002, EvoWorkshops.

[21]  Joshua Poh-Onn Fan,et al.  A Heuristic Search Algorithm for Flow-Shop Scheduling , 2008, Informatica.

[22]  Graham Kendall,et al.  A Tabu-Search Hyperheuristic for Timetabling and Rostering , 2003, J. Heuristics.

[23]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[24]  Yusin Lee,et al.  A heuristic for the train pathing and timetabling problem , 2009 .

[25]  Edmund K. Burke,et al.  Adaptive automated construction of hybrid heuristics for exam timetabling and graph colouring problems , 2009, Eur. J. Oper. Res..

[26]  Bart Selman,et al.  Local search strategies for satisfiability testing , 1993, Cliques, Coloring, and Satisfiability.

[27]  Raymond S. K. Kwan,et al.  Object Oriented Bus Vehicle Scheduling — the BOOST System , 1999 .

[28]  Helmut Mausser,et al.  Comparison of neural and heuristic methods for a timetabling problem , 1996 .

[29]  Pierre Hansen,et al.  Special issue on mathematical contributions to metaheuristics editorial , 2009, J. Heuristics.

[30]  Eric Soubeiga,et al.  Development and application of hyperheuristics to personnel scheduling , 2003 .

[31]  Michel Gendreau,et al.  Special issue on recent advances in metaheuristics , 2010, J. Heuristics.

[32]  Graham Kendall,et al.  A simulated annealing hyper-heuristic methodology for flexible decision support , 2012, 4OR.

[33]  Thomas Stützle,et al.  Ant Colony Optimization Theory , 2004 .

[34]  Christian Blum,et al.  Metaheuristics in combinatorial optimization: Overview and conceptual comparison , 2003, CSUR.