A Domain Decomposition Method for the Helmholtz Equation and Related Optimal Control Problems

We present an iterative domain decomposition method to solve the Helmholtz equation and related optimal control problems. The proof of convergence of this method relies on energy techniques. This method leads to efficient algorithms for the numerical resolution of harmonic wave propagation problems in homogeneous and heterogeneous media.

[1]  Jean E. Roberts,et al.  A unified physical presentation of mixed, mixed-hybrid finite elements and standard finite difference approximations for the determination of velocities in waterflow problems , 1991 .

[2]  Carey M. Rappaport,et al.  Perfectly matched absorbing boundary conditions based on anisotropic lossy mapping of space , 1995 .

[3]  H. Keller,et al.  Asymptotic boundary conditions and numerical methods for nonlinear elliptic problems on unbounded domains , 1987 .

[4]  Jean-Pierre Berenger,et al.  A perfectly matched layer for the absorption of electromagnetic waves , 1994 .

[5]  Patrick Joly,et al.  A new interface condition in the non-overlapping domain decomposition method for the Maxwell equations , 1997 .

[6]  A. Bayliss,et al.  Radiation boundary conditions for wave-like equations , 1980 .

[7]  J. Nédélec A new family of mixed finite elements in ℝ3 , 1986 .

[8]  E. Ben‐Ari,et al.  Matsuri: Festivals of a Japanese Town. , 1993 .

[9]  R. Dautray,et al.  Analyse mathématique et calcul numérique pour les sciences et les techniques , 1984 .

[10]  C. Goldstein,et al.  The finite element method with non-uniform mesh sizes applied to the exterior Helmholtz problem , 1982 .

[11]  J. Périaux,et al.  Domain Decomposition Methods in Science and Engineering , 1994 .

[12]  J. Swinburne Electromagnetic Theory , 1894, Nature.

[13]  J. Nédélec,et al.  Curved finite element methods for the solution of singular integral equations on surfaces in R3 , 1976 .

[14]  D. Givoli Non-reflecting boundary conditions , 1991 .

[15]  J. Lions,et al.  Contrôle optimal de systèmes gouvernés par des équations aux dérivées partielles , 1968 .

[16]  Jean-David Benamou A Massively Parallel Algorithm for the Optimal Control of Systems Governed by Elliptic P.D.E.'s , 1995, PPSC.

[17]  Jean-David Benamou,et al.  A Domain Decomposition Method with Coupled Transmission Conditions for the Optimal Control of Systems Governed by Elliptic Partial Differential Equations , 1996 .

[18]  Junping Wang,et al.  A parallel iterative procedure applicable to the approximate solution of second order partial differential equations by mixed finite element methods , 1993 .

[19]  Charles I. Goldstein,et al.  A Finite Element Method for Solving Heimholt/ Type Equations in Waveguides and Other Unbounded Domains* , 2010 .

[20]  F. Collino Perfectly Matched Absorbing Layers for the Paraxial Equations , 1997 .

[21]  P. Joly,et al.  Mathematical analysis of electromagnetic open waveguides , 1995 .

[22]  Patrick Joly,et al.  Mathematical and Numerical Aspects of Wave Propagation Phenomena , 1991 .

[23]  Peter Monk,et al.  The Perfectly Matched Layer in Curvilinear Coordinates , 1998, SIAM J. Sci. Comput..

[24]  Daniel Bouche,et al.  Méthodes asymptotiques en électromagnétisme , 1994 .

[25]  J. Keller,et al.  Exact non-reflecting boundary conditions , 1989 .

[26]  Olof B. Widlund,et al.  Domain Decomposition Algorithms for Indefinite Elliptic Problems , 2017, SIAM J. Sci. Comput..

[27]  Samuel P. Marin,et al.  Variational methods for underwater acoustic problems , 1978 .