Mixed Ehrhart polynomials

For lattice polytopes $P_1,\ldots, P_k \subseteq \mathbb{R}^d$, Bihan (2014) introduced the discrete mixed volume $\mathrm{DMV}(P_1,\dots,P_k)$ in analogy to the classical mixed volume. In this note we initiate the study of the associated mixed Ehrhart polynomial $\mathrm{ME}_{P_1,\dots,P_k}(n) = \mathrm{DMV}(nP_1,\dots,nP_k)$. We study properties of this polynomial and we give interpretations for some of its coefficients in terms of (discrete) mixed volumes. Bihan (2014) showed that the discrete mixed volume is always non-negative. Our investigations yield simpler proofs for certain special cases. We also introduce and study the associated mixed $h^*$-vector. We show that for large enough dilates $r P_1, \ldots, rP_k$ the corresponding mixed $h^*$-polynomial has only real roots and as a consequence the mixed $h^*$-vector becomes non-negative.

[1]  Alan Stapledon,et al.  Inequalities and Ehrhart $\delta$-Vectors , 2008, 0801.0873.

[2]  Christian Haase,et al.  Discrete Mixed Volume and Hodge-Deligne Numbers , 2016, 1609.09115.

[3]  Thorsten Theobald,et al.  Combinatorics and Genus of Tropical Intersections and Ehrhart Theory , 2009, SIAM J. Discret. Math..

[4]  Reinhard Steffens,et al.  Mixed volumes, mixed Ehrhart theory and applications to tropical geometry and linkage configurations , 2009 .

[5]  Alexander Barvinok,et al.  Integer Points in Polyhedra , 2008 .

[6]  E. Ehrhardt,et al.  Sur un problème de géométrie diophantienne linéaire. II. , 1967 .

[7]  K. Ball CONVEX BODIES: THE BRUNN–MINKOWSKI THEORY , 1994 .

[8]  D. N. Bernshtein The number of roots of a system of equations , 1975 .

[9]  Raman Sanyal,et al.  Combinatorial positivity of translation-invariant valuations and a discrete Hadwiger theorem , 2018, Journal of the European Mathematical Society.

[10]  J. Alonso,et al.  Convex and Discrete Geometry , 2009 .

[11]  A. Khovanskii Newton polyhedra and the genus of complete intersections , 1978 .

[12]  A. Klyachko,et al.  NEWTON POLYHEDRA AND AN ALGORITHM FOR COMPUTING HODGE?DELIGNE NUMBERS , 1987 .

[13]  Frédéric Bihan Irrational Mixed Decomposition and Sharp Fewnomial Bounds for Tropical Polynomial Systems , 2016, Discret. Comput. Geom..

[14]  Charalambos A. Charalambides,et al.  Enumerative combinatorics , 2018, SIGA.

[15]  Richard P. Stanley,et al.  Decompositions of Rational Convex Polytopes , 1980 .

[16]  Persi Diaconis,et al.  Carries, shuffling, and symmetric functions , 2009, Adv. Appl. Math..

[17]  F. Brenti,et al.  Unimodal, log-concave and Pólya frequency sequences in combinatorics , 1989 .

[18]  Matthias Beck,et al.  On the log-concavity of Hilbert series of Veronese subrings and Ehrhart series , 2008, 0804.3639.

[19]  S. Robins,et al.  Computing the Continuous Discretely , 2015 .

[20]  Raman Sanyal,et al.  Combinatorial mixed valuations , 2016 .

[21]  Volkmar Welker,et al.  The Veronese construction for formal power series and graded algebras , 2007, Adv. Appl. Math..