Vector of Locally Aggregated Embeddings for Text Representation

We present Vector of Locally Aggregated Embeddings (VLAE) for effective and, ultimately, lossless representation of textual content. Our model encodes each input text by effectively identifying and integrating the representations of its semantically-relevant parts. The proposed model generates high quality representation of textual content and improves the classification performance of current state-of-the-art deep averaging networks across several text classification tasks.

[1]  Sanjeev Arora,et al.  A Simple but Tough-to-Beat Baseline for Sentence Embeddings , 2017, ICLR.

[2]  Jeffrey Dean,et al.  Efficient Estimation of Word Representations in Vector Space , 2013, ICLR.

[3]  Mirella Lapata,et al.  Vector-based Models of Semantic Composition , 2008, ACL.

[4]  Danqi Chen,et al.  A Fast and Accurate Dependency Parser using Neural Networks , 2014, EMNLP.

[5]  Stephen Clark,et al.  Specializing Word Embeddings for Similarity or Relatedness , 2015, EMNLP.

[6]  Pascal Vincent,et al.  Stacked Denoising Autoencoders: Learning Useful Representations in a Deep Network with a Local Denoising Criterion , 2010, J. Mach. Learn. Res..

[7]  Geoffrey E. Hinton,et al.  Learning internal representations by error propagation , 1986 .

[8]  Guigang Zhang,et al.  Deep Learning , 2016, Int. J. Semantic Comput..

[9]  Guoyin Wang,et al.  Baseline Needs More Love: On Simple Word-Embedding-Based Models and Associated Pooling Mechanisms , 2018, ACL.

[10]  Jeffrey Pennington,et al.  GloVe: Global Vectors for Word Representation , 2014, EMNLP.

[11]  Yoshua Bengio,et al.  A Neural Probabilistic Language Model , 2003, J. Mach. Learn. Res..

[12]  P. Rousseeuw Silhouettes: a graphical aid to the interpretation and validation of cluster analysis , 1987 .

[13]  D. Sculley,et al.  Web-scale k-means clustering , 2010, WWW '10.

[14]  Andrew Zisserman,et al.  All About VLAD , 2013, 2013 IEEE Conference on Computer Vision and Pattern Recognition.

[15]  Harish Karnick,et al.  SCDV : Sparse Composite Document Vectors using soft clustering over distributional representations , 2016, EMNLP.

[16]  Claire Cardie,et al.  SimCompass: Using Deep Learning Word Embeddings to Assess Cross-level Similarity , 2014, *SEMEVAL.

[17]  Yoshua Bengio,et al.  Convergence Properties of the K-Means Algorithms , 1994, NIPS.

[18]  Matteo Pagliardini,et al.  Unsupervised Learning of Sentence Embeddings Using Compositional n-Gram Features , 2017, NAACL.

[19]  Cordelia Schmid,et al.  Aggregating local descriptors into a compact image representation , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[20]  Katrin Erk,et al.  A Structured Vector Space Model for Word Meaning in Context , 2008, EMNLP.

[21]  Hal Daumé,et al.  Target-Dependent Churn Classification in Microblogs , 2015, AAAI.

[22]  Pascal Vincent,et al.  Representation Learning: A Review and New Perspectives , 2012, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[23]  Christopher Potts,et al.  Learning Word Vectors for Sentiment Analysis , 2011, ACL.

[24]  Kevin Gimpel,et al.  Charagram: Embedding Words and Sentences via Character n-grams , 2016, EMNLP.

[25]  Michael N. Jones,et al.  Querying Word Embeddings for Similarity and Relatedness , 2018, NAACL-HLT.

[26]  Hal Daumé,et al.  Deep Unordered Composition Rivals Syntactic Methods for Text Classification , 2015, ACL.

[27]  Jason Weston,et al.  A unified architecture for natural language processing: deep neural networks with multitask learning , 2008, ICML '08.

[28]  Tomas Mikolov,et al.  Bag of Tricks for Efficient Text Classification , 2016, EACL.