Fully Dynamic Maximal Matching in O (log n) Update Time

We present an algorithm for maintaining maximal matching in a graph under addition and deletion of edges. Our data structure is randomized that takes $O( \log n)$ expected amortized time for each edge update where $n$ is the number of vertices in the graph. While there is a trivial $O(n)$ algorithm for edge update, the previous best known result for this problem was due to Ivkovi\'c and Llyod\cite{llyod}. For a graph with $n$ vertices and $m$ edges, they give an $O( {(n+ m)}^{0.7072})$ update time algorithm which is sub linear only for a sparse graph. %To the best of our knowledge this %is the first polylog update time for maximal matching that implies an % exponential improvement from the previous results. For the related problem of maximum matching, Onak and Rubinfeld \cite{onak} designed a randomized data structure that achieves $O(\log^2 n)$ expected amortized time for each update for maintaining a $c$-approximate maximum matching for some large constant $c$. In contrast, we can maintain a factor two approximate maximum matching in $O(\log n )$ expected amortized time per update as a direct corollary of the maximal matching scheme. This in turn also implies a two approximate vertex cover maintenance scheme that takes $O(\log n )$expected amortized time per update.

[1]  Larry Carter,et al.  Universal classes of hash functions (Extended Abstract) , 1977, STOC '77.

[2]  Soumojit Sarkar,et al.  Fully dynamic randomized algorithms for graph spanners , 2012, TALG.

[3]  Greg N. Frederickson,et al.  Data structures for on-line updating of minimum spanning trees , 1983, STOC.

[4]  Rasmus Pagh,et al.  Cuckoo Hashing , 2001, Encyclopedia of Algorithms.

[5]  P. Sedgwick Matching , 2009, BMJ : British Medical Journal.

[6]  Errol L. Lloyd,et al.  Fully Dynamic Maintenance of Vertex Cover , 1993, WG.

[7]  Sandeep Sen,et al.  Fully Dynamic Maximal Matching in O (log n) Update Time , 2011, FOCS.

[8]  Bruce M. Kapron,et al.  Dynamic graph connectivity in polylogarithmic worst case time , 2013, SODA.

[9]  RonDana,et al.  Approximating the minimum vertex cover in sublinear time and a connection to distributed algorithms , 2007 .

[10]  Bernard Chazelle,et al.  The discrepancy method - randomness and complexity , 2000 .

[11]  Sandeep Sen,et al.  Maintaining Approximate Maximum Weighted Matching in Fully Dynamic Graphs , 2012, FSTTCS.

[12]  Telikepalli Kavitha,et al.  Efficient algorithms for maximum weight matchings in general graphs with small edge weights , 2012, SODA.

[13]  HolmJacob,et al.  Poly-logarithmic deterministic fully-dynamic algorithms for connectivity, minimum spanning tree, 2-edge, and biconnectivity , 2001 .

[14]  Richard Peng,et al.  Fully Dynamic $(1+\epsilon)$-Approximate Matchings , 2013, 1304.0378.

[15]  Uri Zwick,et al.  Dynamic approximate all-pairs shortest paths in undirected graphs , 2004, 45th Annual IEEE Symposium on Foundations of Computer Science.

[16]  Robert E. Tarjan,et al.  Faster scaling algorithms for general graph matching problems , 1991, JACM.

[17]  Monika Henzinger,et al.  Average-Case Analysis of Dynamic Graph Algorithms , 1995, SODA '95.

[18]  John H. Reif,et al.  Erratum: Optimal Parallel Randomized Algorithms for Three-Dimensional Convex Hulls and Related Problems , 1994, SIAM J. Comput..

[19]  Shay Solomon,et al.  Simple deterministic algorithms for fully dynamic maximal matching , 2012, STOC '13.

[20]  Piotr Sankowski,et al.  Maximum matchings via Gaussian elimination , 2004, 45th Annual IEEE Symposium on Foundations of Computer Science.

[21]  Silvio Micali,et al.  An O(v|v| c |E|) algoithm for finding maximum matching in general graphs , 1980, 21st Annual Symposium on Foundations of Computer Science (sfcs 1980).

[22]  Krzysztof Onak,et al.  Maintaining a large matching and a small vertex cover , 2010, STOC '10.

[23]  Uri Zwick,et al.  Improved dynamic reachability algorithms for directed graphs , 2002, The 43rd Annual IEEE Symposium on Foundations of Computer Science, 2002. Proceedings..

[24]  L. Shapley,et al.  College Admissions and the Stability of Marriage , 1962 .

[25]  Dana Ron,et al.  On Approximating the Minimum Vertex Cover in Sublinear Time and the Connection to Distributed Algorithms , 2007, Electron. Colloquium Comput. Complex..

[26]  Richard M. Karp,et al.  A n^5/2 Algorithm for Maximum Matchings in Bipartite Graphs , 1971, SWAT.

[27]  J. Edmonds Paths, Trees, and Flowers , 1965, Canadian Journal of Mathematics.

[28]  Mikkel Thorup,et al.  Fully-dynamic min-cut , 2001, STOC '01.

[29]  Richard M. Karp,et al.  A n^5/2 Algorithm for Maximum Matchings in Bipartite Graphs , 1971, SWAT.

[30]  Mikkel Thorup,et al.  Poly-logarithmic deterministic fully-dynamic algorithms for connectivity, minimum spanning tree, 2-edge, and biconnectivity , 2001, JACM.

[31]  Éva Tardos,et al.  Algorithm design , 2005 .

[32]  Piotr Sankowski,et al.  Faster dynamic matchings and vertex connectivity , 2007, SODA '07.

[33]  Jack Edmonds,et al.  Matching, Euler tours and the Chinese postman , 1973, Math. Program..

[34]  Shay Solomon,et al.  Deterministic Algorithms for Fully Dynamic Maximal Matching , 2012, ArXiv.