Approaches, Methods and Tools for Solar Energy in Urban Planning

This report gathers and presents approaches, methods and tools that can support and facilitate daylight and solar energy considerations within urban planning processes. The report presents different ways to address existing building stock, new urban environments and landscape environments in relation to use of daylight and active solar. It addresses the need for spatial and energy planning that enhances solar energy while respecting cultural and historical heritage values in urban and landscape contexts.

[1]  Christoph Maurer,et al.  Heating and cooling in high-rise buildings using facade-integrated transparent solar thermal collector systems , 2013 .

[2]  Anatoli Chatzipanagi,et al.  Overview and analysis of current BIPV products: new criteria for supporting the technological transfer in the building sector , 2015 .

[3]  Munari Probst,et al.  Architectural Integration and Design of Solar Thermal Systems , 2011 .

[4]  Selcuk Cebi,et al.  A comparative analysis for multiattribute selection among renewable energy alternatives using fuzzy axiomatic design and fuzzy analytic hierarchy process , 2009 .

[5]  Francesco Frontini,et al.  Solar Radiation and Daylighting Assessment Using the Sky-view Factor (SVF) Analysis as Method to Evaluate Urban Planning Densification Policies Impacts , 2016 .

[6]  Christoph Maurer,et al.  Variable g value of transparent façade collectors , 2012 .

[7]  Jean-Louis Scartezzini,et al.  Visibility of Building Exposed Surfaces for the Potential Application of Solar Panels: A Photometric Model , 2016, UDMV.

[8]  Maria Cristina Munari Probst,et al.  Visual prominence vs architectural sensitivity of solar applications in existing urban areas: an experience with web-shared photos , 2017 .

[9]  Maria Wall,et al.  The Solar Map as a Knowledge Base for Solar Energy Use , 2014 .

[10]  Maria Cristina Munari Probst,et al.  Designing solar thermal systems for architectural integration , 2013 .

[11]  Cristina Silvia Polo Lopez,et al.  VerGe: Städtische Verdichtung und Energie Verhalten der Bestehenden Gebäude , 2015 .

[12]  Volker Coors,et al.  Combining GIS-based statistical and engineering urban heat consumption models: Towards a new framework for multi-scale policy support , 2015 .

[13]  Matías Mérida-Rodríguez,et al.  The Production of Solar Photovoltaic Power and Its Landscape Dimension , 2015 .

[14]  Enrico De Angelis,et al.  Sustainable Built Environment ( SBE ) regional conference Expanding Boundaries : Systems Thinking for the Built Environment 1 ! SOLAR ENERGY AVAILABILITY IN URBAN DENSIFICATION PROCESS IMPACT ON EXISTING BUILDINGS IN A SWISS CASE STUDY , 2016 .

[15]  C. Potolias,et al.  A multi-criteria methodology for energy planning and developing renewable energy sources at a regional level: A case study Thassos, Greece , 2013 .

[16]  Adrienne Grêt-Regamey,et al.  Multi-criteria decision analysis for planning and design of sustainable energy landscapes , 2012 .

[17]  Rodney Helliwell,et al.  Site Layout Planning for Daylight and Sunlight. A guide to good practice (2nd edition) , 2012 .

[18]  Alessandra Scognamiglio,et al.  Solar energy systems in architecture - Integration criteria and guidelines , 2013 .

[19]  R. Krippner,et al.  Architectural Aspects of Solar Techniques. Studies on the Integration of Solar Energy Systems into the Building Skin. , 2000 .

[20]  Millenium Ecosystem Assessment Ecosystems and human well-being: synthesis , 2005 .

[21]  Marja Lundgren,et al.  Urban densification affects daylighting: existing daylight levels in Swedish multi-family housing as a base for future daylight requirement , 2017 .

[22]  Cengiz Kahraman,et al.  A fuzzy multicriteria methodology for selection among energy alternatives , 2010, Expert Syst. Appl..

[23]  Pieter Glasbergen City and Environment , 2008 .

[24]  Christian Roecker,et al.  SOLAR ENERGY PROMOTION & URBAN CONTEXT PROTECTION : LESO ‐ QSV ( QUALITY ‐ SITE ‐ VISIBILITY ) , 2016 .

[25]  Charles S. Pearson,et al.  Economics and the Global Environment , 2000 .

[26]  E. Løken Use of multicriteria decision analysis methods for energy planning problems , 2007 .

[27]  I. G. Capeluto,et al.  Solar Rights in the Design of Urban Spaces , 2006 .

[28]  Maria Cristina Munari Probst,et al.  Towards an improved architectural quality of building integrated solar thermal systems (BIST) , 2007 .

[29]  Maria Cristina Munari Probst,et al.  Barriers and Needs for Building Integration of Solar Thermal and Photovoltaics , 2010 .

[30]  Danae Diakoulaki,et al.  Multi-criteria decision analysis and cost–benefit analysis of alternative scenarios for the power generation sector in Greece , 2007 .

[31]  Christoph Maurer,et al.  Simple models for building-integrated solar thermal systems , 2015 .

[32]  Barbara Siebert,et al.  Building integrated Photovoltaics , 2012 .

[33]  Anatoli Chatzipanagi,et al.  Building Integrated Photovoltaics. Report 2015 , 2015 .

[34]  M. N. van den Donker,et al.  BIPV products overview for solar building skin (subtopic 6.3 / Building, infrastructure and landscape applications) , 2017 .