Exact travelling solutions for the Lax's seventh-order KdV equation by sech method and rational exp-function method

In this paper, we establish exact solutions for a nonlinear evolution equation. The sech method and the exp-function method are used to construct the solitary travelling wave solutions of Lax’s seventh-order KdV equation. These solutions may be important of significance for the explanation of some practical physical problem.

[1]  Davood Domiri Ganji,et al.  Solitary wave solutions for a generalized Hirota–Satsuma coupled KdV equation by homotopy perturbation method , 2006 .

[2]  Zuntao Fu,et al.  New Jacobi elliptic function expansion and new periodic solutions of nonlinear wave equations , 2001 .

[3]  Sheng Zhang,et al.  APPLICATION OF EXP-FUNCTION METHOD TO HIGH-DIMENSIONAL NONLINEAR EVOLUTION EQUATION , 2008 .

[4]  MalflietW. The tanh method , 2004 .

[5]  A. Hasegawa Plasma instabilities and nonlinear effects , 1975 .

[6]  Abdul-Majid Wazwaz,et al.  The extended tanh method for new solitons solutions for many forms of the fifth-order KdV equations , 2007, Appl. Math. Comput..

[7]  C. S. Gardner,et al.  Method for solving the Korteweg-deVries equation , 1967 .

[8]  Peter Gray,et al.  Chemical Oscillations and Instabilities: Non-Linear Chemical Kinetics , 1990 .

[9]  Guoliang Cai,et al.  A Modified F-expansion Method for Solving Breaking Soliton Equation , 2006 .

[10]  E. Fan,et al.  A note on the homogeneous balance method , 1998 .

[11]  M. Wadati,et al.  Relationships among Inverse Method, Bäcklund Transformation and an Infinite Number of Conservation Laws , 1975 .

[12]  E. Fan,et al.  Extended tanh-function method and its applications to nonlinear equations , 2000 .

[13]  Davood Domiri Ganji,et al.  Application of variational iteration method and homotopy–perturbation method for nonlinear heat diffusion and heat transfer equations , 2007 .

[14]  Ji-Huan He,et al.  Exp-function method for nonlinear wave equations , 2006 .

[15]  Abdul-Majid Wazwaz,et al.  The tanh method for traveling wave solutions of nonlinear equations , 2004, Appl. Math. Comput..

[16]  Abdul-Majid Wazwaz,et al.  Travelling wave solutions of generalized forms of Burgers, Burgers-KdV and Burgers-Huxley equations , 2005, Appl. Math. Comput..

[17]  A. A. Soliman,et al.  Modified extended tanh-function method and its application on nonlinear physical equations , 2006 .

[18]  M. A. Abdou The extended tanh method and its applications for solving nonlinear physical models , 2007, Appl. Math. Comput..

[19]  Abdul-Majid Wazwaz,et al.  Two reliable methods for solving variants of the KdV equation with compact and noncompact structures , 2006 .

[20]  P. Olver Applications of Lie Groups to Differential Equations , 1986 .

[21]  Abdul-Majid Wazwaz,et al.  New solitary wave solutions to the modified forms of Degasperis-Procesi and Camassa-Holm equations , 2007, Appl. Math. Comput..

[22]  D. Ganji The application of He's homotopy perturbation method to nonlinear equations arising in heat transfer , 2006 .

[23]  A. Wazwaz,et al.  Nonlinear variants of the BBM equation with compact and noncompact physical structures , 2005 .

[24]  C. Rogers,et al.  Bäcklund and Darboux Transformations: Frontmatter , 2002 .

[25]  Lihong Ren,et al.  The Exact Solitary Wave Solutions for a Family of BBM Equation , 2006 .

[26]  M. A. Abdou,et al.  NEW PERIODIC SOLUTIONS FOR NONLINEAR EVOLUTION EQUATIONS USING EXP-FUNCTION METHOD , 2007 .

[27]  S. A. El-Wakil,et al.  Modified extended tanh-function method for solving nonlinear partial differential equations , 2002 .

[28]  W. Malfliet Solitary wave solutions of nonlinear wave equations , 1992 .

[29]  V. Matveev,et al.  Darboux Transformations and Solitons , 1992 .

[30]  Abdul-Majid Wazwaz,et al.  The tanh and the sine-cosine methods for compact and noncompact solutions of the nonlinear Klein-Gordon equation , 2005, Appl. Math. Comput..

[31]  P. Clarkson,et al.  Solitons, Nonlinear Evolution Equations and Inverse Scattering: References , 1991 .

[32]  M. Ablowitz,et al.  Solitons, Nonlinear Evolution Equations and Inverse Scattering , 1992 .

[33]  Abdul-Majid Wazwaz,et al.  A sine-cosine method for handlingnonlinear wave equations , 2004, Math. Comput. Model..

[34]  Abdul-Majid Wazwaz,et al.  The tanh method for generalized forms of nonlinear heat conduction and Burgers-Fisher equations , 2005, Appl. Math. Comput..

[35]  Xu-Hong Wu,et al.  EXP-function method and its application to nonlinear equations , 2008 .

[36]  Mingliang Wang,et al.  Periodic wave solutions to a coupled KdV equations with variable coefficients , 2003 .

[37]  Abdelhalim Ebaid,et al.  Exact solitary wave solutions for some nonlinear evolution equations via Exp-function method , 2007 .

[38]  Sheng Zhang,et al.  Application of Exp-function method to a KdV equation with variable coefficients , 2007 .

[39]  Abdul-Majid Wazwaz,et al.  The sine-cosine method for obtaining solutions with compact and noncompact structures , 2004, Appl. Math. Comput..

[40]  L. Chambers Linear and Nonlinear Waves , 2000, The Mathematical Gazette.

[41]  Davood Domiri Ganji,et al.  Approximate general and explicit solutions of nonlinear BBMB equations by Exp-Function method , 2009 .

[42]  Dogan Kaya,et al.  An application of the ADM to seven-order Sawada-Kotara equations , 2004, Appl. Math. Comput..

[43]  Abdul-Majid Wazwaz,et al.  The tan h method: solitons and periodic solutions for the Dodd–Bullough–Mikhailov and the Tzitzeica–Dodd–Bullough equations , 2005 .

[44]  Ryogo Hirota,et al.  Direct method of finding exact solutions of nonlinear evolution equations , 1976 .

[45]  W. Hereman,et al.  The tanh method: I. Exact solutions of nonlinear evolution and wave equations , 1996 .

[46]  D. D. Ganji,et al.  Exact solutions of nonlinear diffusion equations by variational iteration method , 2007, Comput. Math. Appl..

[47]  Abdul-Majid Wazwaz,et al.  The tanh method: exact solutions of the sine-Gordon and the sinh-Gordon equations , 2005, Appl. Math. Comput..

[48]  Zuntao Fu,et al.  JACOBI ELLIPTIC FUNCTION EXPANSION METHOD AND PERIODIC WAVE SOLUTIONS OF NONLINEAR WAVE EQUATIONS , 2001 .

[49]  Paul Abbott,et al.  The Jacobi elliptic-function method for finding periodic-wave solutions to nonlinear evolution equations , 2002 .