Statistical image modeling with the magnitude probability density function of complex wavelet coefficients

We derive the probability density function (pdf) of the magnitude of complex wavelet coefficients with the assumption that each of the real and imaginary parts is characterized by the generalized Gaussian distribution (GGD) model. The parameter estimation method using maximum likelihood for the derived pdf is presented. The derived pdf fits acceptably well with the actual coefficient magnitude of images. To show the usefulness of the derived pdf, we use it to model the magnitude of complex coefficients of texture images for an application in texture image retrieval. The experimental results show that using the derived magnitude pdf yields higher retrieval rate than using the GGD model to fit with the real part or imaginary part of coefficients, and than using the mean and standard deviation of the magnitude of coefficients.

[1]  Stéphane Mallat,et al.  A Theory for Multiresolution Signal Decomposition: The Wavelet Representation , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[2]  H. Chauris,et al.  Uniform Discrete Curvelet Transform for Seismic Processing , 2008 .

[3]  Tien D. Bui,et al.  Multivariate statistical modeling for image denoising using wavelet transforms , 2005, Signal Process. Image Commun..

[4]  Martin J. Wainwright,et al.  Image denoising using scale mixtures of Gaussians in the wavelet domain , 2003, IEEE Trans. Image Process..

[5]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[6]  Laurent Demanet,et al.  Fast Discrete Curvelet Transforms , 2006, Multiscale Model. Simul..

[7]  Robert D. Nowak,et al.  Wavelet-based statistical signal processing using hidden Markov models , 1998, IEEE Trans. Signal Process..

[8]  M.S. Davis,et al.  Statistical Modeling and ML Parameter Estimation of Complex SAR Imagery , 2007, 2007 Conference Record of the Forty-First Asilomar Conference on Signals, Systems and Computers.

[9]  Minh N. Do,et al.  Wavelet-based texture retrieval using generalized Gaussian density and Kullback-Leibler distance , 2002, IEEE Trans. Image Process..

[10]  Levent Sendur,et al.  Bivariate shrinkage functions for wavelet-based denoising exploiting interscale dependency , 2002, IEEE Trans. Signal Process..

[11]  Soontorn Oraintara,et al.  Statistical image modeling using distribution of relative phase in the complex wavelet domain , 2008, 2008 16th European Signal Processing Conference.

[12]  Soontorn Oraintara,et al.  Image Denoising using Shiftable Directional Pyramid and Scale Mixtures of Complex Gaussians , 2007, 2007 IEEE International Symposium on Circuits and Systems.

[13]  N. Kingsbury Complex Wavelets for Shift Invariant Analysis and Filtering of Signals , 2001 .

[14]  Nick G. Kingsbury,et al.  Hidden Markov tree modeling of complex wavelet transforms , 2000, 2000 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings (Cat. No.00CH37100).

[15]  Soontorn Oraintara,et al.  The Shiftable Complex Directional Pyramid—Part I: Theoretical Aspects , 2008, IEEE Transactions on Signal Processing.

[16]  Hervé Chauris,et al.  Uniform Discrete Curvelet Transform , 2010, IEEE Transactions on Signal Processing.