Estimation and selection for the latent block model on categorical data
暂无分享,去创建一个
Gérard Govaert | Gilles Celeux | Vincent Brault | Christine Keribin | G. Celeux | G. Govaert | C. Keribin | V. Brault | Christine Keribin
[1] Arindam Banerjee,et al. Bayesian Co-clustering , 2008, 2008 Eighth IEEE International Conference on Data Mining.
[2] Inderjit S. Dhillon,et al. A generalized maximum entropy approach to bregman co-clustering and matrix approximation , 2004, J. Mach. Learn. Res..
[3] G. McLachlan,et al. The EM Algorithm and Extensions: Second Edition , 2008 .
[4] Gérard Govaert,et al. Un protocole de simulation de données pour la classification croisée , 2012 .
[5] G. Celeux,et al. Stochastic versions of the em algorithm: an experimental study in the mixture case , 1996 .
[6] C. Matias,et al. Identifiability of parameters in latent structure models with many observed variables , 2008, 0809.5032.
[7] Catherine Matias,et al. Convergence of the groups posterior distribution in latent or stochastic block models , 2012, 1206.7101.
[8] Christopher Joseph Pal,et al. Analyzing in situ gene expression in the mouse brain with image registration, feature extraction and block clustering , 2007, BMC Bioinformatics.
[9] Nial Friel,et al. Block clustering with collapsed latent block models , 2010, Statistics and Computing.
[10] Arlindo L. Oliveira,et al. Biclustering algorithms for biological data analysis: a survey , 2004, IEEE/ACM Transactions on Computational Biology and Bioinformatics.
[11] Jean-Patrick Baudry. Sélection de modèle pour la classification non supervisée , 2009 .
[12] Aurore Lomet,et al. Sélection de modèle pour la classification croisée de données continues , 2013 .
[13] G. Govaert,et al. Latent Block Model for Contingency Table , 2010 .
[14] Gérard Govaert,et al. Assessing a Mixture Model for Clustering with the Integrated Completed Likelihood , 2000, IEEE Trans. Pattern Anal. Mach. Intell..
[15] Gilles Celeux,et al. Combining Mixture Components for Clustering , 2010, Journal of computational and graphical statistics : a joint publication of American Statistical Association, Institute of Mathematical Statistics, Interface Foundation of North America.
[16] G. McLachlan,et al. The EM algorithm and extensions , 1996 .
[17] Sylvia Frühwirth-Schnatter,et al. Finite Mixture and Markov Switching Models , 2006 .
[18] S. Roweis,et al. Nonparametric Bayesian Biclustering , 2007 .
[19] Gérard Govaert. La classification croisée , 1989, Monde des Util. Anal. Données.
[20] Gérard Govaert,et al. Block clustering with Bernoulli mixture models: Comparison of different approaches , 2008, Comput. Stat. Data Anal..
[21] Miguel Á. Carreira-Perpiñán,et al. Practical Identifiability of Finite Mixtures of Multivariate Bernoulli Distributions , 2000, Neural Computation.
[22] Alain Celisse,et al. Consistency of maximum-likelihood and variational estimators in the Stochastic Block Model , 2011, 1105.3288.
[23] Sylvia Frühwirth-Schnatter,et al. Dealing with Label Switching under Model Uncertainty , 2011 .
[24] Christine Keribin,et al. Méthodes bayésiennes variationnelles : concepts et applications en neuroimagerie , 2011 .
[25] K. Mengersen,et al. Asymptotic behaviour of the posterior distribution in overfitted mixture models , 2011 .
[26] D. Rubin,et al. Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .
[27] Gérard Govaert,et al. Model selection for the binary latent block model , 2012 .
[28] G. Schwarz. Estimating the Dimension of a Model , 1978 .
[29] M. Verlaan,et al. Non-uniqueness in probabilistic numerical identification of bacteria , 1994, Journal of Applied Probability.
[30] Agostino Nobile,et al. Bayesian finite mixtures with an unknown number of components: The allocation sampler , 2007, Stat. Comput..
[31] Geoffrey J. McLachlan,et al. Finite Mixture Models , 2019, Annual Review of Statistics and Its Application.