Application of linear programming with I-fuzzy sets to matrix games with I-fuzzy goals

In this paper we study a class of linear programming problems having fuzzy goals/constraints that can be described by (Atanassov’s) I-fuzzy sets. Duality theory is developed for this class of problems in the I-fuzzy sense which is subsequently applied to define a new solution concept for two persons zero-sum matrix games with I-fuzzy goals.

[1]  Ronald R. Yager,et al.  OWA aggregation of intuitionistic fuzzy sets , 2009, Int. J. Gen. Syst..

[2]  H. Zimmermann,et al.  Fuzzy Set Theory and Its Applications , 1993 .

[3]  Ioannis K. Vlachos,et al.  Intuitionistic fuzzy information - Applications to pattern recognition , 2007, Pattern Recognit. Lett..

[4]  Suresh Chandra,et al.  Matrix Games with Fuzzy Goals and Fuzzy Linear Programming Duality , 2004, Fuzzy Optim. Decis. Mak..

[5]  K. Atanassov More on intuitionistic fuzzy sets , 1989 .

[6]  Didier Dubois,et al.  Terminological difficulties in fuzzy set theory - The case of "Intuitionistic Fuzzy Sets" , 2005, Fuzzy Sets Syst..

[7]  C. R. Bector,et al.  Matrix games with fuzzy goals and fuzzy payoffs , 2005 .

[8]  Dengfeng Li,et al.  The Linear Programming Approach to Matrix Games with Payoffs of Intuitionistic Fuzzy Sets , 2009, 2009 Second International Workshop on Computer Science and Engineering.

[9]  Suresh Chandra,et al.  On duality in linear programming under fuzzy environment , 2002, Fuzzy Sets Syst..

[10]  Plamen P. Angelov,et al.  Optimization in an intuitionistic fuzzy environment , 1997, Fuzzy Sets Syst..

[11]  Jiang-Xia Nan,et al.  A Nonlinear Programming Approach to Matrix Games with Payoffs of Atanassov's Intuitionistic Fuzzy Sets , 2009, Int. J. Uncertain. Fuzziness Knowl. Based Syst..

[12]  Ichiro Nishizaki,et al.  Fuzzy and Multiobjective Games for Conflict Resolution , 2001 .

[13]  Deng-Feng Li,et al.  Multiattribute decision making models and methods using intuitionistic fuzzy sets , 2005, J. Comput. Syst. Sci..

[14]  Lourdes Campos Fuzzy linear programming models to solve fuzzy matrix games , 1989 .

[15]  Hans-Jürgen Zimmermann,et al.  Fuzzy Set Theory - and Its Applications , 1985 .

[16]  M. Sakawa,et al.  Fuzzy and Multiobjective Games for Conflict Resolution (Studies in Fuzziness and Soft Computing) , 2001 .

[17]  Humberto Bustince,et al.  On averaging operators for Atanassov's intuitionistic fuzzy sets , 2011, Inf. Sci..

[18]  Moussa Larbani,et al.  Existence of equilibrium solution for a non-cooperative game with fuzzy goals and parameters , 2008, Fuzzy Sets Syst..

[19]  Mehmet Ahlatçioglu,et al.  Solutions for fuzzy matrix games , 2010, Comput. Math. Appl..

[20]  Nezam Mahdavi-Amiri,et al.  Duality in fuzzy number linear programming by use of a certain linear ranking function , 2006, Appl. Math. Comput..

[21]  Ranjit Biswas,et al.  An application of intuitionistic fuzzy sets in medical diagnosis , 2001, Fuzzy Sets Syst..

[22]  Richard Bellman,et al.  Decision-making in fuzzy environment , 2012 .

[23]  Przemyslaw Grzegorzewski,et al.  Some notes on (Atanassov's) intuitionistic fuzzy sets , 2005, Fuzzy Sets Syst..

[24]  Hsien-Chung Wu,et al.  Duality Theory in Fuzzy Linear Programming Problems with Fuzzy Coefficients , 2003, Fuzzy Optim. Decis. Mak..

[25]  Jingjun Zhang,et al.  An Aspectual State Model and its Realization Based on AOP , 2009, 2009 WRI World Congress on Software Engineering.

[26]  K. Atanassov New operations defined over the intuitionistic fuzzy sets , 1994 .

[27]  Krassimir T. Atanassov,et al.  Intuitionistic fuzzy sets , 1986 .

[28]  Chris Cornelis,et al.  On the representation of intuitionistic fuzzy t-norms and t-conorms , 2004, IEEE Transactions on Fuzzy Systems.

[29]  Pankaj Gupta,et al.  Bector-Chandra type duality in fuzzy linear programming with exponential membership functions , 2009, Fuzzy Sets Syst..

[30]  C. R. Bector,et al.  Fuzzy Mathematical Programming and Fuzzy Matrix Games , 2005 .

[31]  Jaroslav Ramík,et al.  Duality in Fuzzy Linear Programming: Some New Concepts and Results , 2005, Fuzzy Optim. Decis. Mak..