RELATIVISTIC JET FEEDBACK IN EVOLVING GALAXIES

Over cosmic time, galaxies grow through the hierarchical merging of smaller galaxies. However, the bright region of the galaxy luminosity function is incompatible with the simplest version of hierarchical merging, and it is believed that feedback from the central black hole in the host galaxies reduces the number of bright galaxies and regulates the co-evolution of the black hole and host galaxy. Numerous simulations of galaxy evolution have attempted to include the physical effects of such feedback with a resolution usually exceeding a kiloparsec. However, interactions between jets and the interstellar medium involve processes occurring on less than kiloparsec scales. In order to further the understanding of processes occurring on such scales, we present a suite of simulations of relativistic jets interacting with a fractal two-phase interstellar medium with a resolution of two parsecs and a largest scale of one kiloparsec. The transfer of energy and momentum to the interstellar medium is considerable, and we find that jets with powers in the range of 1043-1046 erg s–1 can inhibit star formation through the dispersal of dense gas in the galaxy core. We determine the effectiveness of this process as a function of the ratio of the jet power to the Eddington luminosity of the black hole, the pressure of the interstellar medium, and the porosity of the dense gas.

[1]  D. Madgwick,et al.  The 2dF Galaxy Redshift Survey: The bJ-band galaxy luminosity function and survey selection function , 2001, astro-ph/0111011.

[2]  A. C. Fabian THE OBSCURED GROWTH OF MASSIVE BLACK HOLES , 1999 .

[3]  R. Ellis,et al.  The 2dF galaxy redshift survey: near-infrared galaxy luminosity functions , 2000, astro-ph/0012429.

[4]  M. Dopita,et al.  Starburst Galaxies: Why the Calzetti Dust Extinction Law? , 2003, astro-ph/0309471.

[5]  Ralf Bender,et al.  The Demography of massive dark objects in galaxy centers , 1997, astro-ph/9708072.

[6]  W. Bonnar,et al.  Boyle's Law and gravitational instability , 1956 .

[7]  C. Carilli,et al.  The heating of gas in a galaxy cluster by X-ray cavities and large-scale shock fronts , 2005, Nature.

[8]  Granada,et al.  The co-evolution of the obscured quasar PKS 1549-79 and its host galaxy : evidence for a high accretion rate and warm outflow , 2006, astro-ph/0606304.

[9]  V. Springel,et al.  Cosmological smoothed particle hydrodynamics simulations: a hybrid multiphase model for star formation , 2002, astro-ph/0206393.

[10]  G. Bodo,et al.  The Piecewise Parabolic Method for Multidimensional Relativistic Fluid Dynamics , 2005, astro-ph/0505200.

[11]  Volker Springel,et al.  The history of star formation in a lcdm universe , 2002, astro-ph/0206395.

[12]  C. S. Crawford,et al.  A deep Chandra observation of the Perseus cluster: shocks and ripples , 2003, astro-ph/0306036.

[13]  J. Silk The formation of galaxy discs , 2000, astro-ph/0010624.

[14]  J. Silk,et al.  GLOBAL STAR FORMATION REVISITED , 2009, 0905.2180.

[15]  M. Dopita,et al.  The Numerical Simulation of Radiative Shocks. II. Thermal Instabilities in Two-dimensional Models , 2003 .

[16]  R. Klessen,et al.  Comparing the statistics of interstellar turbulence in simulations and observations - Solenoidal versus compressive turbulence forcing , 2009, 0905.1060.

[17]  Ralf Bender,et al.  A Relationship between Nuclear Black Hole Mass and Galaxy Velocity Dispersion , 2000, astro-ph/0006289.

[18]  A. Fruchter,et al.  HIGH-REDSHIFT GALAXIES IN THE HUBBLE DEEP FIELD : COLOUR SELECTION AND STAR FORMATION HISTORY TO Z 4 , 1996, astro-ph/9607172.

[19]  J. Schaye,et al.  Dark matter haloes determine the masses of supermassive black holes , 2009, 0911.0935.

[20]  K. Glazebrook,et al.  The Hawaii+Anglo-Australian Observatory K-Band Galaxy Redshift Survey. I. The Local K-Band Luminosity Function , 2002, astro-ph/0209440.

[21]  R. Sutherland,et al.  Interactions of a Light Hypersonic Jet with a Nonuniform Interstellar Medium , 2007, 0707.3668.

[22]  F. Walter,et al.  CO line emission in the halo of a radio galaxy at z = 2.6 , 2009, 0903.0862.

[23]  M. Valluri,et al.  Galaxy Dynamics - A Rutgers Symposium , 1999 .

[24]  M. Dopita,et al.  Cooling functions for low-density astrophysical plasmas , 1993 .

[25]  Ralf Bender,et al.  THE SLOPE OF THE BLACK HOLE MASS VERSUS VELOCITY DISPERSION CORRELATION , 2002, astro-ph/0203468.

[26]  B. Fryxell,et al.  FLASH: An Adaptive Mesh Hydrodynamics Code for Modeling Astrophysical Thermonuclear Flashes , 2000 .

[27]  Feedback, Disk Self-Regulation, and Galaxy Formation , 1996, astro-ph/9612117.

[28]  Andrew King The AGN-starburst connection, galactic superwinds, and M -σ , 2005 .

[29]  P. Hardee,et al.  Three-dimensional Relativistic Magnetohydrodynamic Simulations of Magnetized Spine-Sheath Relativistic Jets , 2007, astro-ph/0703190.

[30]  M. Hawkins,et al.  Decrease in the space density of quasars at high redshift , 1996, Nature.

[31]  Christopher F. McKee,et al.  A General Theory of Turbulence-regulated Star Formation, from Spirals to Ultraluminous Infrared Galaxies , 2005, astro-ph/0505177.

[32]  W. Mccrea The Formation of Population I Stars: Part I. Gravitational Contraction , 1957 .