Expertise Modelling in Community-driven Knowledge Curation Platforms

Expertise modelling has been the subject of extensive research in two main disciplines Information Retrieval (IR) and Social Network Analysis (SNA). Both IR and SNA techniques build the expertise model through a document-centric approach providing a macro-perspective on the knowledge emerging from large corpus of static documents. With the emergence of the Web of Data, there has been a significant shift from static to evolving documents, characterized by micro-contributions. Thus, the existing macro-perspective is no longer sufficient to track the evolution of both knowledge and expertise. The aim of this research is to provide a comprehensive, domain-agnostic model for expertise profiling in the context of dynamic, living documents and evolving knowledge bases. Our approach combines: (i) a finegrained provenance model, (ii) weighted mappings of Linked Data concepts to expertise profiles, via the application of IR-inspired techniques on microcontributions, and (iii) collaboration network analysis to create, refine and enrich expertise profiles in communitycentred environments, based on the relationships between networks of collaborators.

[1]  Wensheng Zhang,et al.  A Study of the Dependencies in Expert Finding , 2010, 2010 Third International Conference on Knowledge Discovery and Data Mining.

[2]  Qun Jin,et al.  Dynamically constructing user profiles with similarity-based online incremental clustering , 2009, Int. J. Adv. Intell. Paradigms.

[3]  Fausto Giunchiglia,et al.  Liquid Publications: Scientific Publications meet the Web , 2007 .

[4]  Gerard Salton,et al.  A vector space model for automatic indexing , 1975, CACM.

[5]  Huajun Chen,et al.  The Semantic Web , 2011, Lecture Notes in Computer Science.

[6]  Hanan Samet,et al.  TwitterStand: news in tweets , 2009, GIS.

[7]  Albert Jones,et al.  Domain-specific ontology mapping by corpus-based semantic similarity , 2008 .

[8]  Pierre-Antoine Champin,et al.  SIOC in action representing the dynamics of online communities , 2010, I-SEMANTICS '10.

[9]  Alexandre Passant,et al.  Twarql: tapping into the wisdom of the crowd , 2010, I-SEMANTICS '10.

[10]  Jonathan W. Musser,et al.  Web 2.0 : principles and best practices , 2007 .

[11]  John G. Breslin,et al.  Combining RDF Vocabularies for Expert Finding , 2007, ESWC.

[12]  Peter A. Flach,et al.  SubSift web services and workflows for profiling and comparing scientists and their published works , 2013, Future Gener. Comput. Syst..

[13]  R. Hoffmann A wiki for the life sciences where authorship matters , 2008, Nature Genetics.

[14]  Bo-Yeong Kang,et al.  Document indexing: a concept-based approach to term weight estimation , 2005, Inf. Process. Manag..

[15]  Pablo N. Mendes,et al.  Twitris 2.0 : Semantically Empowered System for Understanding Perceptions From Social Data , 2010 .

[16]  Alan L. Rector,et al.  Modularisation of domain ontologies implemented in description logics and related formalisms including OWL , 2003, K-CAP '03.

[17]  Qi Gao,et al.  Semantic Enrichment of Twitter Posts for User Profile Construction on the Social Web , 2011, ESWC.

[18]  Leyla Jael García Castro,et al.  An open annotation ontology for science on web 3.0 , 2011, J. Biomed. Semant..

[19]  Santosh S. Vempala,et al.  Latent semantic indexing: a probabilistic analysis , 1998, PODS '98.

[20]  Dawei Song,et al.  Integrating multiple windows and document features for expert finding , 2009 .

[21]  Mark A. Musen,et al.  Building a biomedical ontology recommender web service , 2010, J. Biomed. Semant..

[22]  Siegfried Handschuh,et al.  An Abstract Framework for Modeling Argumentation in Virtual Communities , 2009, Int. J. Virtual Communities Soc. Netw..

[23]  Andreas Harth,et al.  SIOC: an approach to connect web-based communities , 2006, Int. J. Web Based Communities.

[24]  Pierre-Antoine Champin,et al.  Semantic Representation of Provenance in Wikipedia , 2010, SWPM@ISWC.

[25]  Juan-Zi Li,et al.  Expert Finding in a Social Network , 2007, DASFAA.

[26]  M. Stumptner,et al.  Finding Experts By Semantic Matching of User Profiles , 2008 .

[27]  Matthew Michelson,et al.  Tweet Disambiguate Entities Retrieve Folksonomy SubTree Step 1 : Discover Categories Generate Topic Profile from SubTrees Step 2 : Discover Profile Topic Profile : “ English Football ” “ World Cup ” , 2010 .

[28]  Tim Berners-Lee,et al.  Linked Data - The Story So Far , 2009, Int. J. Semantic Web Inf. Syst..