Quantitative magnetic force microscopy on perpendicularly magnetized samples

We present a transfer-function approach to calculate the force on a magnetic force microscope tip and the stray field due to a perpendicularly magnetized medium having an arbitrary magnetization pattern. Under certain conditions, it is possible to calculate the magnetization pattern from the measured force data. We apply this transfer function theory to quantitatively simulate magnetic force microscopy data acquired on a CoNi/Pt multilayer and on an epitaxially grown Cu/Ni/Cu/Si(001) magnetic thin film. The method described here serves as an excellent basis for (i) the definition of the condition for achieving maximum resolution in a specific experiment, (ii) the differences of force and force z-derivative imaging, (iii) the artificial distinction between domain and domain wall contrast, and finally (iv) the influence of various tip shapes on image content.

[1]  Lateral resolution in magnetic force microscopy. Application to periodic structures , 1990 .

[2]  H. Güntherodt,et al.  Domain structure of Ba ferrite observed by tunneling stabilized magnetic force microscopy , 1993 .

[3]  P. Guethner Simultaneous imaging of Si(111) 7×7 with atomic resolution in scanning tunneling microscopy, atomic force microscopy, and atomic force microscopy noncontact mode , 1996 .

[4]  C. Gerber,et al.  Atomic resolution in dynamic force microscopy across steps on Si(1 1 1)7×7 , 1996 .

[5]  M. A. Bopp,et al.  Direct measurement of standing evanescent waves with a photon-scanning tunneling microscope. , 1994, Applied optics.

[6]  Lukas Rosenthaler,et al.  Observation of magnetic forces by the atomic force microscope , 1987 .

[7]  H. Güntherodt,et al.  Analysis of in-plane bit structure by magnetic force microscopy , 1990 .

[8]  G. Persch,et al.  Applications of magnetic force microscopy in magnetic storage device manufacturing , 1992 .

[9]  D. Rugar,et al.  Frequency modulation detection using high‐Q cantilevers for enhanced force microscope sensitivity , 1991 .

[10]  Paul,et al.  Magnetic Domain Structure in Ultrathin Films. , 1995, Physical review letters.

[11]  Roland Wiesendanger,et al.  Scanning Tunneling Microscopy II , 1992 .

[12]  H. Güntherodt,et al.  The topography effect on magnetic images in magnetic force microscopy , 1990 .

[13]  Magnetic-force-sensing STM: novel application of STM for simultaneous measurement of topography and field gradient of magnetic recording heads , 1992 .

[14]  C. Bruder Magnetic force microscopy and superconductors , 1991 .

[15]  U. Hartmann,et al.  Calculation of the Bloch wall contrast in magnetic force microscopy , 1870 .

[16]  S. Kitamura,et al.  Observation of 7×7 Reconstructed Structure on the Silicon (111) Surface using Ultrahigh Vacuum Noncontact Atomic Force Microscopy , 1995 .

[17]  U. Hartmann Magnetic force microscopy: Some remarks from the micromagnetic point of view , 1988 .

[18]  H. Güntherodt,et al.  Magnetic domain structure in ultrathin Cu/Ni/Cu/Si(001) films (invited) , 1996 .

[19]  Magnetization image reconstruction from magnetic force scanning tunneling microscopy images , 1993 .

[20]  Fritz,et al.  Observation of single vortices condensed into a vortex-glass phase by magnetic force microscopy. , 1995, Physical review letters.

[21]  Y. Martin,et al.  Magnetic imaging by ‘‘force microscopy’’ with 1000 Å resolution , 1987 .

[22]  Grütter,et al.  Theoretical approach to magnetic force microscopy. , 1989, Physical review. B, Condensed matter.

[23]  Udo D. Schwarz,et al.  A miniature fibre optic force microscope scan head , 1993 .

[24]  M. Welland,et al.  Magnetic force microscope study of local pinning effects , 1994 .

[25]  P. Trouilloud,et al.  A study of MIG head readout waveform asymmetry, using magnetic force and Kerr microscopy , 1992 .

[26]  U. Hartmann,et al.  Generation and imaging of domains with the magnetic force microscope , 1992 .

[27]  Substrate stress controlled magnetic domains in amorphous Terfenol‐D films , 1995 .

[28]  Computation of fields and forces in magnetic force microscopy , 1989, International Magnetics Conference.

[29]  R. Erlandsson,et al.  Ultrahigh vacuum scanning force/scanning tunneling microscope: Application to high‐resolution imaging of Si(111)7×7 , 1996 .

[30]  Hartmann,et al.  Flux measurements on ferromagnetic microprobes by electron holography. , 1994, Physical review. B, Condensed matter.

[31]  H. Güntherodt,et al.  Analysis of magnetic bit pattern by magnetic force microscopy , 1990 .

[32]  H. Thomas,et al.  Observation and manipulation of vortices in a YBa2Cu3O7 thin film with a low temperature magnetic force microscope , 1994 .

[33]  T. Ohkubo,et al.  Reduced-area magnetic bit recording and detection using magnetic force microscopy based on application of bidirectional magnetomotive force , 1993 .

[34]  C. Schönenberger,et al.  Separation of magnetic and topographic effects in force microscopy , 1990 .

[35]  J. Oti,et al.  Numerical micromagnetic techniques and their applications to magnetic force microscopy calculations , 1993 .

[36]  Deconvolution of magnetic force images by Fourier analysis , 1992 .

[37]  H. Hug,et al.  Models for the stray field from magnetic tips used in magnetic force microscopy , 1992 .

[38]  R. Celotta,et al.  High spatial resolution quantitative micromagnetics (invited) , 1990 .

[39]  Theoretical estimates of forces acting on a magnetic force microscope tip over a high temperature superconductor , 1991 .

[40]  Gary A. Gibson,et al.  Noise analysis and image focusing for magnetic force microscopy , 1993 .

[41]  J. E. Stern,et al.  Magnetic force microscopy: General principles and application to longitudinal recording media , 1990 .

[42]  H. Güntherodt,et al.  Low temperature magnetic force microscopy , 1993 .

[43]  F. Giessibl,et al.  Atomic Resolution of the Silicon (111)-(7x7) Surface by Atomic Force Microscopy , 1995, Science.

[44]  M. Ohta,et al.  Atomically Resolved InP(110) Surface Observed with Noncontact Ultrahigh Vacuum Atomic Force Microscope , 1995 .

[45]  Thompson,et al.  Perpendicular magnetic anisotropy, domains, and misfit strain in epitaxial Ni/Cu1-xNix/Cu/Si (001) thin films. , 1995, Physical review. B, Condensed matter.

[46]  An ultra-high resolution single-domain magnetic force microscope tip fabricated using nanolithography , 1994 .

[47]  H. Reittu,et al.  Magnetic force microscopy of Abrikosov vortices , 1992 .

[48]  Hartmann Analysis of Bloch-wall fine structures by magnetic force microscopy. , 1989, Physical review. B, Condensed matter.

[49]  U. Hartmann Theory of magnetic force microscopy , 1990 .

[50]  Thomas,et al.  Magnetic field and order parameter of an anisotropic type-II superconductor with an isolated flux line. , 1993, Physical review. B, Condensed matter.

[51]  Spatial mapping of the sensitivity function of magnetic recording heads using a magnetic force microscope as a local flux applicator , 1992 .

[52]  J. Oti,et al.  Micromagnetic simulations of tunneling stabilized magnetic force microscopy , 1993 .

[53]  A. Moser,et al.  Low temperature magnetic force microscopy on high-Tc-superconductors , 1994 .

[54]  S. Kitamura,et al.  Observation of Silicon Surfaces Using Ultrahigh Vacuum Noncontact Atomic Force Microscope , 1996 .

[55]  C. Schönenberger,et al.  Understanding magnetic force microscopy , 1990 .

[56]  A. Johnston,et al.  Electron beam fabrication and characterization of high- resolution magnetic force microscopy tips , 1996 .

[57]  Magnetic force microscopy signal of flux line above a semi-infinite type II-superconductor , 1992 .

[58]  Magnetic force microscopy of recording heads , 1991 .