The Gaia-ESO Survey: The inner disc, intermediate-age open cluster Pismis 18

Context. Pismis 18 is a moderately populated, intermediate-age open cluster located within the solar circle at a Galactocentric distance of about seven kpc. Few open clusters have been studied in detail in the inner disc region before the Gaia-ESO Survey. Aims. New data from the Gaia-ESO Survey allowed us to conduct an extended radial velocity membership study as well as spectroscopic metallicity and detailed chemical abundance measurements for this cluster. Methods. Gaia-ESO Survey data for 142 potential members, lying on the upper main sequence and on the red clump, yielded radial velocity measurements, which, together with proper motion measurements from the Gaia Second Data Release (Gaia DR2), were used to determine the systemic velocity of the cluster and membership of individual stars. Photometry from Gaia DR2 was used to re-determine cluster parameters based on high confidence member stars only. Cluster abundance measurements of six radial-velocity member stars with UVES high-resolution spectroscopy are presented for 23 elements. Results. The average radial velocity of 26 high confidence members is −27.5 ± 2.5 (std) km s−1 with an average proper motion of pmra = −5.65 ± 0.08 (std) mas yr−1 and pmdec = −2.29 ± 0.11 (std) mas yr−1. According to the new estimates, based on high confidence members, Pismis 18 has an age of τ = 700+40−50 Myr, interstellar reddening of E(B − V) = 0.562+0.012−0.026 mag and a de-reddened distance modulus of DM0 = 11.96+0.10−0.24 mag. The median metallicity of the cluster (using the six UVES stars) is [Fe/H] = +0.23 ± 0.05 dex, with [α/Fe] = 0.07 ± 0.13 and a slight enhancement of s- and r-neutron-capture elements. Conclusions. With the present work, we fully characterized the open cluster Pismis 18. We confirmed its present location in the inner disc. We estimated a younger age than the previous literature values and we gave, for the first time, its metallicity and its detailed abundances. Its [α/Fe] and [s-process/Fe], both slightly super-solar, are in agreement with other inner-disc open clusters observed by the Gaia-ESO survey.

[1]  Sergey E. Koposov,et al.  The Gaia-ESO Survey: the origin and evolution of s-process elements , 2018, Astronomy & Astrophysics.

[2]  R. Carrera,et al.  A Gaia DR2 view of the open cluster population in the Milky Way , 2018, Astronomy & Astrophysics.

[3]  D. Feuillet,et al.  The Gaia-ESO Survey: properties of newly discovered Li-rich giants , 2018, Astronomy & Astrophysics.

[4]  A. Bragaglia,et al.  Deep secrets of intermediate-mass giants and supergiants , 2018, Astronomy & Astrophysics.

[5]  K. Stassun,et al.  Evidence for a Systematic Offset of −80 μas in the Gaia DR2 Parallaxes , 2018, The Astrophysical Journal.

[6]  Stefano Casertano,et al.  Milky Way Cepheid Standards for Measuring Cosmic Distances and Application to Gaia DR2: Implications for the Hubble Constant , 2018, The Astrophysical Journal.

[7]  L. M. Sarro,et al.  Gaia Data Release 2 , 2018, Astronomy & Astrophysics.

[8]  P. J. Richards,et al.  Gaia Data Release 2 , 2018, Astronomy & Astrophysics.

[9]  T. A. Lister,et al.  Gaia Data Release 2. Summary of the contents and survey properties , 2018, 1804.09365.

[10]  P. J. Richards,et al.  Gaia Data Release 2: Mapping the Milky Way disc kinematics , 2018 .

[11]  Sergey E. Koposov,et al.  The Gaia-ESO Survey: a kinematical and dynamical study of four young open clusters , 2018, Astronomy & Astrophysics.

[12]  P. Moroni,et al.  Theoretical uncertainties on the radius of low- and very-low-mass stars , 2018, 1802.04550.

[13]  A. Krone-Martins,et al.  Characterising open clusters in the solar neighbourhood with the Tycho-Gaia Astrometric Solution , 2018, Astronomy & Astrophysics.

[14]  S. Randich,et al.  The Gaia-ESO Survey: open clusters in Gaia-DR1 , 2017, Astronomy & Astrophysics.

[15]  F. Anders,et al.  NGC 6705 a young α -enhanced open cluster from OCCASO data (cid:63) , 2018 .

[16]  F. Anders,et al.  NGC 6705 a young $\alpha$-enhanced Open Cluster from OCCASO data , 2017, 1710.11069.

[17]  L. Casamiquela,et al.  OCCASO – II. Physical parameters and Fe abundances of red clump stars in 18 open clusters , 2017, 1706.03656.

[18]  L. Szabados,et al.  Gaia Data Release 1. Open cluster astrometry: performance, limitations, and future prospects , 2017, 1703.01131.

[19]  A. Bragaglia,et al.  The Gaia-ESO Survey: radial distribution of abundances in the Galactic disc from open clusters and young-field stars , 2017, 1703.00762.

[20]  A. Klutsch,et al.  The Gaia-ESO Survey: The present-day radial metallicity distribution of the Galactic disc probed by pre-main-sequence clusters , 2017, 1702.03461.

[21]  Sergey E. Koposov,et al.  The Gaia -ESO survey: The inner disk intermediate-age open cluster NGC 6802 , 2017, 1702.01109.

[22]  H. Rix,et al.  Galactic Doppelgängers: The Chemical Similarity Among Field Stars and Among Stars with a Common Birth Origin , 2017, 1701.07829.

[23]  E. Grebel,et al.  Observing the products of stellar evolution in the old open cluster M67 with APOGEE , 2017, 1701.00979.

[24]  S. Degl'Innocenti,et al.  Statistical errors and systematic biases in the calibration of the convective core overshooting with eclipsing binaries - A case study: TZ Fornacis , 2016, 1612.07066.

[25]  V. Adibekyan,et al.  Gaia FGK benchmark stars: opening the black box of stellar element abundance determination , 2016, 1612.05013.

[26]  G. Carraro,et al.  The Gaia-ESO Survey: the inner disk, intermediate-age open cluster Trumpler 23 , 2016, 1611.00859.

[27]  E. Pancino,et al.  The gaia -ESO survey : Calibration strategy , 2016, 1610.06480.

[28]  Observatoire de la Côte d'Azur,et al.  Gaia Data Release 1. Summary of the astrometric, photometric, and survey properties , 2016, 1609.04172.

[29]  A. Bragaglia,et al.  TheGaia-ESO Survey: Probes of the inner disk abundance gradient , 2016, Astronomy & Astrophysics.

[30]  A. Bragaglia,et al.  Abundances and kinematics for ten anticentre open clusters , 2016, 1602.07121.

[31]  Sergey E. Koposov,et al.  The Gaia-ESO Survey: Sodium and aluminium abundances in giants and dwarfs. Implications for stellar and Galactic chemical evolution , 2016, 1602.03289.

[32]  C. Soubiran,et al.  On the metallicity of open clusters. III. Homogenised sample , 2015, 1511.08884.

[33]  V. D’Orazi,et al.  Photometric and spectroscopic study of the intermediate-age open cluster ngc 2355* , 2015, 1508.05100.

[34]  D. A. García-Hernández,et al.  Young α-enriched giant stars in the solar neighbourhood , 2015 .

[35]  C. Babusiaux,et al.  TheGaia-ESO Survey: Empirical determination of the precision of stellar radial velocities and projected rotation velocities , 2015, Astronomy & Astrophysics.

[36]  G. Carraro,et al.  The Gaia-ESO Survey: Insights into the inner-disc evolution from open clusters , 2015, 1505.04039.

[37]  M. Asplund,et al.  Atomic and molecular data for optical stellar spectroscopy , 2015, 1506.06697.

[38]  C. Prieto,et al.  Young [α/Fe]-enhanced stars discovered by CoRoT and APOGEE: What is their origin? , 2015, 1503.06990.

[39]  L. Pasquini,et al.  The Gaia-ESO Survey: the analysis of high-resolution UVES spectra of FGK-type stars , 2014, 1409.0568.

[40]  M. Irwin,et al.  The Gaia-ESO Survey: Stellar content and elemental abundances in the massive cluster NGC 6705 , 2014, 1407.1510.

[41]  J. Carlberg ROTATIONAL AND RADIAL VELOCITIES OF 1.3–2.2 M☉ RED GIANTS IN OPEN CLUSTERS , 2014, 1404.4358.

[42]  C. Babusiaux,et al.  The Gaia-ESO Survey: processing FLAMES-UVES spectra , 2014 .

[43]  Sergey E. Koposov,et al.  Gaia-ESO Survey: Properties of the intermediate age open cluster NGC 4815 , 2014, 1403.7451.

[44]  H. J. Farnhill,et al.  The VST Photometric Hα Survey of the Southern Galactic Plane and Bulge (VPHAS , 2014, 1402.7024.

[45]  C. Chiappini,et al.  Chemodynamical evolution of the Milky Way disk II: Variations with Galactic radius and height above the disk plane , 2014, 1401.5796.

[46]  A. Korn,et al.  Abundances and possible diffusion of elements in M 67 stars , 2013, 1310.6297.

[47]  A. Krone-Martins,et al.  UPMASK: unsupervised photometric membership assignment in stellar clusters , 2013, 1309.4471.

[48]  Sergey E. Koposov,et al.  The Gaia-ESO Survey: Reevaluation of the parameters of the open cluster Trumpler 20 using photometry and spectroscopy , 2013, 1312.3925.

[49]  Sofia Randich,et al.  The Gaia-ESO Large Public Spectroscopic Survey , 2013 .

[50]  F. Schuller,et al.  Stellar clusters in the inner Galaxy and their correlation with cold dust emission , 2013, 1310.2612.

[51]  E. Athanassoula,et al.  Radial migration in a bar-dominated disk galaxy I: Impact on chemical evolution , 2013, 1309.2437.

[52]  N. V. Kharchenko,et al.  Global survey of star clusters in the Milky Way II. The catalogue of basic parameters , 2013, 1308.5822.

[53]  B. Carney,et al.  ELEMENTAL ABUNDANCE RATIOS IN STARS OF THE OUTER GALACTIC DISK. IV. A NEW SAMPLE OF OPEN CLUSTERS , 2012, 1206.6931.

[54]  Sergio Ortolani,et al.  The Gaia-ESO Public Spectroscopic Survey , 2012 .

[55]  S. Degl'Innocenti,et al.  The Pisa Stellar Evolution Data Base for low-mass stars , 2012, 1202.4864.

[56]  S. Randich,et al.  NEWS ON THE s PROCESS FROM YOUNG OPEN CLUSTERS , 2011, 1112.5290.

[57]  S. Degl'Innocenti,et al.  The Pisa pre-main sequence tracks and isochrones - A database covering a wide range of Z, Y, mass, and age values , 2011, 1107.2318.

[58]  F. I. Pelupessy,et al.  Modelling the formation and evolution of star cluster populations in galaxy simulations , 2011, 1102.1013.

[59]  M. Asplund,et al.  The chemical composition of the Sun , 2009, 0909.0948.

[60]  S. Udry,et al.  Catalogues of radial and rotational velocities of 1253 F–K dwarfs in 13 nearby open clusters , 2009 .

[61]  Italy.,et al.  ENHANCED PRODUCTION OF BARIUM IN LOW-MASS STARS: EVIDENCE FROM OPEN CLUSTERS , 2009, 0901.2743.

[62]  Laura Magrini,et al.  The evolution of the Galactic metallicity gradient from high-resolution spectroscopy of open clusters , 2008, 0812.0854.

[63]  M. Marconi,et al.  The FRANEC stellar evolutionary code , 2008 .

[64]  D. O. Astronomy,et al.  Open clusters as key tracers of Galactic chemical evolution. III. Element abundances in Berkeley 20 , 2008, 0807.2313.

[65]  The main parameters of 25 un-studied open star clusters , 2008 .

[66]  L. Pasquini,et al.  Abundances of four open clusters from solar stars , 2008, 0806.2280.

[67]  A. Helmi,et al.  FROM STARS TO GALAXIES: BUILDING THE PIECES TO BUILD UP THE UNIVERSE , 2007 .

[68]  L. Pasquini,et al.  Element abundances of unevolved stars in the open cluster M 67 , 2006, astro-ph/0601239.

[69]  L. A. Antonelli,et al.  Interacting Binaries: Accretion, Evolution, Outcomes , 2005 .

[70]  B. Carney,et al.  Elemental Abundance Ratios in Stars of the Outer Galactic Disk. I. Open Clusters , 2005, astro-ph/0504193.

[71]  L. Girardi,et al.  Theoretical isochrones compared to 2MASS observations: Open clusters at nearly solar metallicity , 2004 .

[72]  Richard H. Cyburt Primordial nucleosynthesis for the new cosmology: Determining uncertainties and examining concordance , 2004 .

[73]  A. Robin,et al.  A synthetic view on structure and evolution of the Milky Way , 2003 .

[74]  K. Freeman,et al.  The New Galaxy: Signatures of Its Formation , 2002, astro-ph/0208106.

[75]  A. Moitinho,et al.  New catalogue of optically visible open clusters and candidates , 2002, astro-ph/0203351.

[76]  M. Shetrone,et al.  Spectroscopy of Blue Stragglers and Turnoff Stars in M67 (NGC 2682) , 2000, astro-ph/0006399.

[77]  D. Geisler,et al.  A Photometric and Spectroscopic Study of the Southern Open Clusters Pismis 18, Pismis 19, NGC 6005, and NGC 6253 , 1998 .

[78]  E. D. Friel,et al.  The Old Open Clusters of the Milky Way , 1995 .