A pol I transcriptional body associated with VSG mono-allelic expression in Trypanosoma brucei

[1]  S. Akira,et al.  Toll-like receptors: critical proteins linking innate and acquired immunity , 2001, Nature Immunology.

[2]  S. Akira,et al.  The innate immune response to bacterial flagellin is mediated by Toll-like receptor 5 , 2001, Nature.

[3]  E Pays,et al.  The VSG expression sites of Trypanosoma brucei: multipurpose tools for the adaptation of the parasite to mammalian hosts. , 2001, Molecular and biochemical parasitology.

[4]  P. Borst,et al.  Control of VSG gene expression sites. , 2001, Molecular and biochemical parasitology.

[5]  K. Anderson,et al.  The antibacterial arm of the drosophila innate immune response requires an IkappaB kinase. , 2001, Genes & development.

[6]  S. Akira,et al.  A Toll-like receptor recognizes bacterial DNA , 2000, Nature.

[7]  A. Aderem,et al.  The repertoire for pattern recognition of pathogens by the innate immune system is defined by cooperation between toll-like receptors. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[8]  D. Hultmark,et al.  A family of peptidoglycan recognition proteins in the fruit fly Drosophila melanogaster. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[9]  J. Hoffmann,et al.  Toll-related receptors and the control of antimicrobial peptide expression in Drosophila. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[10]  R. Dziarski,et al.  Mammalian Peptidoglycan Recognition Protein Binds Peptidoglycan with High Affinity, Is Expressed in Neutrophils, and Inhibits Bacterial Growth* , 2000, The Journal of Biological Chemistry.

[11]  L. Vanhamme,et al.  Differential RNA elongation controls the variant surface glycoprotein gene expression sites of Trypanosoma brucei , 2000, Molecular microbiology.

[12]  N. Franc,et al.  Innate recognition systems in insect immunity and development: new approaches in Drosophila. , 2000, Microbes and infection.

[13]  P. Ricciardi-Castagnoli,et al.  Physical contact between lipopolysaccharide and toll-like receptor 4 revealed by genetic complementation. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[14]  I. Andó,et al.  Relish, a central factor in the control of humoral but not cellular immunity in Drosophila. , 1999, Molecular cell.

[15]  M. Ashburner,et al.  Constitutive activation of toll-mediated antifungal defense in serpin-deficient Drosophila. , 1999, Science.

[16]  S. Melville,et al.  Predominance of Duplicative VSG Gene Conversion in Antigenic Variation in African Trypanosomes , 1999, Molecular and Cellular Biology.

[17]  P. Borst,et al.  Control of variant surface glycoprotein gene‐expression sites in Trypanosoma brucei , 1999, The EMBO journal.

[18]  P. Cook The organization of replication and transcription. , 1999, Science.

[19]  F C Kafatos,et al.  Phylogenetic perspectives in innate immunity. , 1999, Science.

[20]  D. Jackson,et al.  Regional specialization in human nuclei: visualization of discrete sites of transcription by RNA polymerase III , 1999, The EMBO journal.

[21]  G. Cross,et al.  Trypanosoma brucei variant surface glycoprotein regulation involves coupled activation/inactivation and chromatin remodeling of expression sites , 1999, The EMBO journal.

[22]  Y. Ip,et al.  Toll receptor-mediated Drosophila immune response requires Dif, an NF-κB factor , 1999 .

[23]  F. Grosveld Activation by locus control regions? , 1999, Current opinion in genetics & development.

[24]  G. Cross,et al.  Trypanosoma brucei , 1998 .

[25]  P. Borst,et al.  Mono-allelic expression of genes in simple eukaryotes. , 1999, Trends in genetics : TIG.

[26]  C. Sapienza,et al.  Monoallelic expression: 'there can only be one'. , 1998, Trends in genetics : TIG.

[27]  P. Borst,et al.  Subnuclear localization of the active variant surface glycoprotein gene expression site in Trypanosoma brucei. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[28]  H. Steiner,et al.  A peptidoglycan recognition protein in innate immunity conserved from insects to humans. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[29]  G. Cross,et al.  In situ analysis of a variant surface glycoprotein expression-site promoter region in Trypanosoma brucei. , 1998, Molecular and biochemical parasitology (Print).

[30]  P. Borst,et al.  The role of transferrin-receptor variation in the host range of Trypanosoma brucei , 1998, Nature.

[31]  B. Lemaître,et al.  Drosophila host defense: differential induction of antimicrobial peptide genes after infection by various classes of microorganisms. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[32]  K. Gull,et al.  Partitioning of large and minichromosomes in Trypanosoma brucei. , 1997, Science.

[33]  A S Belmont,et al.  In vivo localization of DNA sequences and visualization of large-scale chromatin organization using lac operator/repressor recognition , 1996, The Journal of cell biology.

[34]  G. Cross,et al.  DNA rearrangements associated with multiple consecutive directed antigenic switches in Trypanosoma brucei , 1996, Molecular and cellular biology.

[35]  K. Anderson,et al.  A conserved signaling pathway: the Drosophila toll-dorsal pathway. , 1996, Annual review of cell and developmental biology.

[36]  K. Gull,et al.  Evidence for an interplay between cell cycle progression and the initiation of differentiation between life cycle forms of African trypanosomes , 1994, The Journal of cell biology.

[37]  T. Hartshorne,et al.  RNA B is the major nucleolar trimethylguanosine-capped small nuclear RNA associated with fibrillarin and pre-rRNAs in Trypanosoma brucei , 1993, Molecular and cellular biology.

[38]  G. Rudenko,et al.  The PARP and VSG genes of Trypanosoma brucei do not resemble RNA polymerase II transcription units in sensitivity to Sarkosyl in nuclear run-on assays. , 1992, Nucleic acids research.

[39]  P. Borst,et al.  Efficient production of functional mRNA mediated by RNA polymerase I in Trypanosoma brucei , 1991, Nature.

[40]  M. Ouellette,et al.  The promoter for a variant surface glycoprotein gene expression site in Trypanosoma brucei. , 1990, The EMBO journal.

[41]  G. Rudenko,et al.  Alpha‐amanitin resistant transcription of protein coding genes in insect and bloodstream form Trypanosoma brucei. , 1989, The EMBO journal.

[42]  D. Salmon,et al.  The genes and transcripts of an antigen gene expression site from T. brucei , 1989, Cell.

[43]  H. Schwarz,et al.  Procyclin gene expression and loss of the variant surface glycoprotein during differentiation of Trypanosoma brucei , 1989, The Journal of cell biology.

[44]  P. Borst,et al.  Alpha-amanitin-insensitive transcription of variant surface glycoprotein genes provides further evidence for discontinuous transcription in trypanosomes. , 1984, Nucleic acids research.

[45]  G. Cross Identification, purification and properties of clone-specific glycoprotein antigens constituting the surface coat of Trypanosoma brucei , 1975, Parasitology.