Vergleich von Parametern der zeitaufgelösten Autofluoreszenz bei Gesunden und Patienten mit früher AMD

ZusammenfassungHintergrundZur quantitativen Beurteilung früher Veränderungen bei altersbedingter Makuladegeneration, die im zellulären Stoffwechsel vermutet werden, wurde ein Fluoreszenz Lifetime Mapper (FLM) erprobt.MethodeMit dem FLM wird die zeitaufgelöste Fundusfluoreszenz mit Pikosekunden-Laserpulsen bei 448 nm angeregt. Diese wird in 2 Spektralbereichen (K1=490–560 nm, K2=560–700 nm) durch zeitkorreliertes Einzelphotonenzählen detektiert. Der zeitabhängige Abfall der Fluoreszenzintensität wird mit 3 Abklingzeiten approximiert. Die ermittelten Abklingzeiten ermöglichen einen Vergleich mit endogenen Fluorophoren des zellulären Stoffwechsels.ErgebnisseFür 8 Gesunde wurden erstmalig die Mittelwerte der Abklingzeiten der Autofluoreszenz bestimmt (K1: τ1=118 ps, τ2=584 ps, τ3=2826 ps, K2: τ1=104 ps, τ2=477 ps, τ3=1623 ps). Bei 15 Patienten mit AMD (AREDS Kategorien I und II) wurden längere Abklingzeiten (K1: τ1=166 ps, τ2=986 ps, τ3=3309 ps, K2: τ1=137 ps, τ2=583 ps, τ3=1924 ps) ermittelt. Mit den Parametern 1 und 2 im kurzwelligen Kanal sind Augengesunde und Patienten bereits im Frühstadium der AMD signifikant trennbar. Fluorophorspezifische Veränderungen in der Makula konnten an Einzelbeispielen bei fortgeschrittener AMD demonstriert werden.SchlussfolgerungMessungen im 30-Grad-Fundusfeld zeigen, dass bereits im Frühstadium der AMD spezifische Änderungen auch außerhalb der Makula vorliegen. Diese wirken auch in der neuronalen Retina, der τ2 zugeordnet werden kann. Verlängerungen der Lifetime τ2 im kurzwelligen Kanal können zumindest teilweise auf eine Zunahme von an Protein gebundenem NADH zurückgeführt werden, dessen Anteil bei verringerter Zellatmung steigt.AbstractBackgroundA fluorescence lifetime mapper (FLM) was tested for quantitative estimation of early alterations in age-related macular degeneration (AMD) which are assumed to be in cellular metabolism.MethodIn FLM time-resolved autofluorescence of the fundus is excited by picosecond (ps) laser impulses at 448 nm and detected in 2 spectral ranges (K1=490–560 nm and K2=560–700 nm) by time-correlated single photon counting. The time-dependent decrease in fluorescence intensity was approximated using 3 decay rates. The calculated lifetimes allow a comparison with endogenous fluorophores of cellular metabolism.ResultsInitially mean lifetimes were determined for 8 healthy subjects (K1: τ1=118 ps, τ2=584 ps, τ3=2826 ps, K2: τ1=104 ps, τ2=477 ps, τ3=1623 ps). In 15 AMD patients (AREDS categories I and II) the lifetimes were longer (K1: τ1=166 ps, τ2=986 ps, τ3=3309 ps, K2: τ1=137 ps, τ2=583 ps, τ3=1924 ps). The best separation between healthy subjects and patients with early AMD was possible by parameters 1 and 2 in the short-wave channel. Fluorophore-specific alterations in the macula could be demonstrated in isolated cases with advanced AMD.ConclusionMeasurements in the 30° fundus field demonstrated that specific alterations were already present even in early AMD and also outside the macula. These act in the neuronal retina, because parameter τ2 is related to this layer. Increases in the lifetime of parameter τ2 in the short wave channel could at least partially be determined by an increase of protein bound NADH, the content of which increases with reduced cellular respiration.

[1]  D. Schweitzer,et al.  Intrinsic tissue fluorescence in an organotypic perfusion culture of the porcine ocular fundus exposed to blue light and free radicals , 2008, Graefe's Archive for Clinical and Experimental Ophthalmology.

[2]  K. Nakanishi,et al.  Characterization of Peroxy-A2E and Furan-A2E Photooxidation Products and Detection in Human and Mouse Retinal Pigment Epithelial Cell Lipofuscin* , 2005, Journal of Biological Chemistry.

[3]  Wolfgang Becker Advanced Photon Counting Techniques Ii , 2007 .

[4]  A. Pawlak,et al.  Primary Photophysical Properties of A2E in Solution , 2001 .

[5]  D. Schweitzer,et al.  Lipofuscin Accumulation in an Organotypic Perfusion Culture of Porcine Fundi Under Oxidative Stress and Blue Light Irradiation , 2005 .

[6]  Edward A. Boettner,et al.  Transmission of the Ocular Media , 1962 .

[7]  G. Eldred,et al.  Retinal age pigments generated by self-assembling lysosomotropic detergents , 1993, Nature.

[8]  Giovanni Staurenghi,et al.  Classification of fundus autofluorescence patterns in early age-related macular disease. , 2005, Investigative ophthalmology & visual science.

[9]  K. Bartz-Schmidt,et al.  Oxidation causes melanin fluorescence. , 2001, Investigative ophthalmology & visual science.

[10]  M. Katz,et al.  Fluorophores of the human retinal pigment epithelium: separation and spectral characterization. , 1988, Experimental eye research.

[11]  D. Schweitzer,et al.  Towards metabolic mapping of the human retina , 2007, Microscopy research and technique.

[12]  Martin Hammer,et al.  Spectral and time-resolved studies on ocular structures , 2007, European Conference on Biomedical Optics.

[13]  Jennifer I. Lim,et al.  A randomized, placebo-controlled, clinical trial of high-dose supplementation with vitamins C and E, beta carotene, and zinc for age-related macular degeneration and vision loss: AREDS report no. 8. , 2001, Archives of ophthalmology.

[14]  R. Radu,et al.  Characterization of Native Retinal Fluorophores Involved in Biosynthesis of A2E and Lipofuscin-associated Retinopathies* , 2006, Journal of Biological Chemistry.

[15]  R Cubeddu,et al.  Photophysical Studies of A2‐E, Putative Precursor of Lipofuscin, in Human Retinal Pigment Epithelial Cells , 1999, Photochemistry and photobiology.

[16]  K. Nakanishi,et al.  Biosynthetic Studies of A2E, a Major Fluorophore of Retinal Pigment Epithelial Lipofuscin* , 2002, The Journal of Biological Chemistry.

[17]  Joseph R. Lakowicz,et al.  Principles of Fluorescence Spectroscopy, Third Edition , 2008 .

[18]  P. Morton,et al.  Progress in Biomedical Optics and Imaging , 2003 .

[19]  J. Lakowicz Principles of fluorescence spectroscopy , 1983 .

[20]  E. Gaillard,et al.  Oxidation of A2E Results in the Formation of Highly Reactive Aldehydes and Ketones , 2006, Photochemistry and photobiology.

[21]  K. Nakanishi,et al.  Isolation and characterization of a retinal pigment epithelial cell fluorophore: an all-trans-retinal dimer conjugate. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[22]  K. Nakanishi,et al.  Characterization of dihydro-A2PE: an intermediate in the A2E biosynthetic pathway. , 2007, Biochemistry.

[23]  K. Nakanishi,et al.  The lipofuscin fluorophore A2E mediates blue light-induced damage to retinal pigmented epithelial cells. , 2000, Investigative ophthalmology & visual science.

[24]  Dietrich Schweitzer,et al.  Interpretation of measurements of dynamic fluorescence of the eye , 2007, SPIE Optics East.

[25]  K. Nakanishi,et al.  Isolation and one-step preparation of A2E and iso-A2E, fluorophores from human retinal pigment epithelium. , 1998, Proceedings of the National Academy of Sciences of the United States of America.