A faster capacity scaling algorithm for minimum cost submodular flow

Abstract.We describe an O(n4hmin{logU,n2logn}) capacity scaling algorithm for the minimum cost submodular flow problem. Our algorithm modifies and extends the Edmonds–Karp capacity scaling algorithm for minimum cost flow to solve the minimum cost submodular flow problem. The modification entails scaling a relaxation parameter δ. Capacities are relaxed by attaching a complete directed graph with uniform arc capacity δ in each scaling phase. We then modify a feasible submodular flow by relaxing the submodular constraints, so that complementary slackness is satisfied. This creates discrepancies between the boundary of the flow and the base polyhedron of a relaxed submodular function. To reduce these discrepancies, we use a variant of the successive shortest path algorithm that augments flow along minimum cost paths of residual capacity at least δ. The shortest augmenting path subroutine we use is a variant of Dijkstra’s algorithm modified to handle exchange capacity arcs efficiently. The result is a weakly polynomial time algorithm whose running time is better than any existing submodular flow algorithm when U is small and C is big. We also show how to use maximum mean cuts to make the algorithm strongly polynomial. The resulting algorithm is the first capacity scaling algorithm to match the current best strongly polynomial bound for submodular flow.

[1]  Satoru Iwata,et al.  A faster algorithm for minimum cost submodular flows , 1998, SODA '98.

[2]  Satoru Iwata,et al.  A combinatorial strongly polynomial algorithm for minimizing submodular functions , 2001, JACM.

[3]  C. Lucchesi,et al.  A Minimax Theorem for Directed Graphs , 1978 .

[4]  András Frank,et al.  An application of simultaneous diophantine approximation in combinatorial optimization , 1987, Comb..

[5]  András Frank,et al.  Generalized polymatroids and submodular flows , 1988, Math. Program..

[6]  S. Fujishige,et al.  A Strongly Polynomial-Time Algorithm for Minimizing Submodular Functions (Algorithm Engineering as a New Paradigm) , 1999 .

[7]  Richard M. Karp,et al.  Theoretical Improvements in Algorithmic Efficiency for Network Flow Problems , 1972, Combinatorial Optimization.

[8]  P. Schönsleben Ganzzahlige Polymatroid-Intersektions-Algorithmen , 1980 .

[9]  András Frank,et al.  A Primal-Dual Algorithm for Submodular Flows , 1985, Math. Oper. Res..

[10]  András Frank,et al.  Finding feasible vectors of Edmonds-Giles polyhedra , 1984, J. Comb. Theory, Ser. B.

[11]  Satoru Iwata,et al.  Algorithms for submodular flows , 2000 .

[12]  E. L. Lawler,et al.  Computing Maximal "Polymatroidal" Network Flows , 1982, Math. Oper. Res..

[13]  Tomasz Radzik,et al.  Parametric Flows, Weighted Means of Cuts, and Fractional Combinatorial Optimization , 1993 .

[14]  Alexander Schrijver,et al.  A Combinatorial Algorithm Minimizing Submodular Functions in Strongly Polynomial Time , 2000, J. Comb. Theory B.

[15]  Satoru Iwata,et al.  Improved algorithms for submodular function minimization and submodular flow , 2000, STOC '00.

[16]  Éva Tardos,et al.  Layered Augmenting Path Algorithms , 1986, Math. Oper. Res..

[17]  J. Edmonds,et al.  A Min-Max Relation for Submodular Functions on Graphs , 1977 .

[18]  Satoru Fujishige,et al.  Submodular functions and optimization , 1991 .

[19]  S. Fujishige,et al.  New algorithms for the intersection problem of submodular systems , 1992 .

[20]  S. Fujishige,et al.  A NOTE ON SUBMODULAR FUNCTIONS ON DISTRIBUTIVE LATTICES , 1983 .

[21]  Satoru Iwata,et al.  A fully combinatorial algorithm for submodular function minimization , 2001, SODA '02.

[22]  Satoru Iwata,et al.  A fast cost scaling algorithm for submodular flow , 2000, Inf. Process. Lett..

[23]  S. Fujishige ALGORITHMS FOR SOLVING THE INDEPENDENT-FLOW PROBLEMS , 1978 .

[24]  Satoru Iwata,et al.  A Strongly Polynomial Cut Canceling Algorithm for the Submodular Flow Problem , 1999, IPCO.

[25]  Satoru Iwata,et al.  A capacity scaling algorithm for convex cost submodular flows , 1996, SODA '96.

[26]  S. Thomas McCormick,et al.  Computing Maximum Mean Cuts , 1994, Discret. Appl. Math..

[27]  Satoru Fujishige,et al.  A capacity-rounding algorithm for the minimum-cost circulation problem: A dual framework of the Tardos algorithm , 1986, Math. Program..

[28]  Satoru Fujishige,et al.  A Strongly Polynomial Algorithm for Minimum Cost Submodular Flow Problems , 1989, Math. Oper. Res..

[29]  Satoru Fujishige,et al.  A note on the Frank—Tardos bi-truncation algorithm for crossing-submodular functions , 1992, Math. Program..

[30]  Éva Tardos,et al.  A strongly polynomial minimum cost circulation algorithm , 1985, Comb..

[31]  S. Thomas McCormick,et al.  Two Strongly Polynomial Cut Cancelling Algorithms for Minimum Cost Network Flow , 1993, Discret. Appl. Math..

[32]  Jack Edmonds,et al.  Submodular Functions, Matroids, and Certain Polyhedra , 2001, Combinatorial Optimization.

[33]  Satoru Fujishige,et al.  Structures of polyhedra determined by submodular functions on crossing families , 1984, Math. Program..

[34]  Tomasz Radzik Newton's method for fractional combinatorial optimization , 1992, Proceedings., 33rd Annual Symposium on Foundations of Computer Science.

[35]  Satoru Iwata,et al.  A combinatorial, strongly polynomial-time algorithm for minimizing submodular functions , 2000, STOC '00.

[36]  Satoru Iwata,et al.  Relaxed Most Negative Cycle and Most Positive Cut Canceling Algorithms for Minimum Cost Flow , 2000, Math. Oper. Res..