A faster capacity scaling algorithm for minimum cost submodular flow
暂无分享,去创建一个
Satoru Iwata | S. Thomas McCormick | Lisa Fleischer | L. Fleischer | S. Iwata | S. McCormick | S. McCormick
[1] Satoru Iwata,et al. A faster algorithm for minimum cost submodular flows , 1998, SODA '98.
[2] Satoru Iwata,et al. A combinatorial strongly polynomial algorithm for minimizing submodular functions , 2001, JACM.
[3] C. Lucchesi,et al. A Minimax Theorem for Directed Graphs , 1978 .
[4] András Frank,et al. An application of simultaneous diophantine approximation in combinatorial optimization , 1987, Comb..
[5] András Frank,et al. Generalized polymatroids and submodular flows , 1988, Math. Program..
[6] S. Fujishige,et al. A Strongly Polynomial-Time Algorithm for Minimizing Submodular Functions (Algorithm Engineering as a New Paradigm) , 1999 .
[7] Richard M. Karp,et al. Theoretical Improvements in Algorithmic Efficiency for Network Flow Problems , 1972, Combinatorial Optimization.
[8] P. Schönsleben. Ganzzahlige Polymatroid-Intersektions-Algorithmen , 1980 .
[9] András Frank,et al. A Primal-Dual Algorithm for Submodular Flows , 1985, Math. Oper. Res..
[10] András Frank,et al. Finding feasible vectors of Edmonds-Giles polyhedra , 1984, J. Comb. Theory, Ser. B.
[11] Satoru Iwata,et al. Algorithms for submodular flows , 2000 .
[12] E. L. Lawler,et al. Computing Maximal "Polymatroidal" Network Flows , 1982, Math. Oper. Res..
[13] Tomasz Radzik,et al. Parametric Flows, Weighted Means of Cuts, and Fractional Combinatorial Optimization , 1993 .
[14] Alexander Schrijver,et al. A Combinatorial Algorithm Minimizing Submodular Functions in Strongly Polynomial Time , 2000, J. Comb. Theory B.
[15] Satoru Iwata,et al. Improved algorithms for submodular function minimization and submodular flow , 2000, STOC '00.
[16] Éva Tardos,et al. Layered Augmenting Path Algorithms , 1986, Math. Oper. Res..
[17] J. Edmonds,et al. A Min-Max Relation for Submodular Functions on Graphs , 1977 .
[18] Satoru Fujishige,et al. Submodular functions and optimization , 1991 .
[19] S. Fujishige,et al. New algorithms for the intersection problem of submodular systems , 1992 .
[20] S. Fujishige,et al. A NOTE ON SUBMODULAR FUNCTIONS ON DISTRIBUTIVE LATTICES , 1983 .
[21] Satoru Iwata,et al. A fully combinatorial algorithm for submodular function minimization , 2001, SODA '02.
[22] Satoru Iwata,et al. A fast cost scaling algorithm for submodular flow , 2000, Inf. Process. Lett..
[23] S. Fujishige. ALGORITHMS FOR SOLVING THE INDEPENDENT-FLOW PROBLEMS , 1978 .
[24] Satoru Iwata,et al. A Strongly Polynomial Cut Canceling Algorithm for the Submodular Flow Problem , 1999, IPCO.
[25] Satoru Iwata,et al. A capacity scaling algorithm for convex cost submodular flows , 1996, SODA '96.
[26] S. Thomas McCormick,et al. Computing Maximum Mean Cuts , 1994, Discret. Appl. Math..
[27] Satoru Fujishige,et al. A capacity-rounding algorithm for the minimum-cost circulation problem: A dual framework of the Tardos algorithm , 1986, Math. Program..
[28] Satoru Fujishige,et al. A Strongly Polynomial Algorithm for Minimum Cost Submodular Flow Problems , 1989, Math. Oper. Res..
[29] Satoru Fujishige,et al. A note on the Frank—Tardos bi-truncation algorithm for crossing-submodular functions , 1992, Math. Program..
[30] Éva Tardos,et al. A strongly polynomial minimum cost circulation algorithm , 1985, Comb..
[31] S. Thomas McCormick,et al. Two Strongly Polynomial Cut Cancelling Algorithms for Minimum Cost Network Flow , 1993, Discret. Appl. Math..
[32] Jack Edmonds,et al. Submodular Functions, Matroids, and Certain Polyhedra , 2001, Combinatorial Optimization.
[33] Satoru Fujishige,et al. Structures of polyhedra determined by submodular functions on crossing families , 1984, Math. Program..
[34] Tomasz Radzik. Newton's method for fractional combinatorial optimization , 1992, Proceedings., 33rd Annual Symposium on Foundations of Computer Science.
[35] Satoru Iwata,et al. A combinatorial, strongly polynomial-time algorithm for minimizing submodular functions , 2000, STOC '00.
[36] Satoru Iwata,et al. Relaxed Most Negative Cycle and Most Positive Cut Canceling Algorithms for Minimum Cost Flow , 2000, Math. Oper. Res..