Dual-Band Capacitive Loaded Frequency Selective Surfaces With Close Band Spacing

In this letter, a novel miniaturized dual-band capacitive loaded frequency selective surface (FSS) is presented, in which each periodic cell consist of two neighboring capacitive loaded ring slot resonator with the same dimension. To eliminate the undesired coupling between unit cells, the unit cell is placed in a Faraday cage structure created by arrays of metallic substrate vias. An S-band dual-band FSS with such structures is designed and fabricated, both simulated and measured results show that the proposed FSS provides high transmission with close band spacing at 2.5 and 3.5 GHz, and there is no other resonance frequency up to 15 GHz. Furthermore, the FSS dimension is miniaturized to 0.082 lambda (lambda refer to the resonant wavelength of 2.5 GHz). Also, it is not sensitive to the angle of oblique incidence wave. The design and discussion about dual-band FSS loading with lumped elements is presented for the first time.