Reconstructing pectoral appendicular muscle anatomy in fossil fish and tetrapods over the fins‐to‐limbs transition

The question of how tetrapod limbs evolved from fins is one of the great puzzles of evolutionary biology. While palaeontologists, developmental biologists, and geneticists have made great strides in explaining the origin and early evolution of limb skeletal structures, that of the muscles remains largely unknown. The main reason is the lack of consensus about appendicular muscle homology between the closest living relatives of early tetrapods: lobe‐finned fish and crown tetrapods. In the light of a recent study of these homologies, we re‐examined osteological correlates of muscle attachment in the pectoral girdle, humerus, radius, and ulna of early tetrapods and their close relatives. Twenty‐nine extinct and six extant sarcopterygians were included in a meta‐analysis using information from the literature and from original specimens, when possible. We analysed these osteological correlates using parsimony‐based character optimization in order to reconstruct muscle anatomy in ancestral lobe‐finned fish, tetrapodomorph fish, stem tetrapods, and crown tetrapods. Our synthesis revealed that many tetrapod shoulder muscles probably were already present in tetrapodomorph fish, while most of the more‐distal appendicular muscles either arose later from largely undifferentiated dorsal and ventral muscle masses or did not leave clear correlates of attachment in these taxa. Based on this review and meta‐analysis, we postulate a stepwise sequence of specific appendicular muscle acquisitions, splits, and fusions that led from the ancestral sarcopterygian pectoral fin to the ancestral tetrapod forelimb. This sequence largely agrees with previous hypotheses based on palaeontological and comparative work, but it is much more comprehensive in terms of both muscles and taxa. Combined with existing information about the skeletal system, our new synthesis helps to illuminate the genetic, developmental, morphological, functional, and ecological changes that were key components of the fins‐to‐limbs transition.

[1]  Marcello Ruta,et al.  Fins to limbs: what the fossils say 1 , 2002, Evolution & development.

[2]  S. J. Godfrey The postcranial skeletal anatomy of the carboniferous tetrapod Greererpeton burkemorani Romer, 1969 , 1989 .

[3]  F. L. S. P. E. Ahlberg,et al.  Paired fin skeletons and relationships of the fossil group Porolepiformes (Osteichthyes: Sarcopterygii) , 1989 .

[4]  Elisabeth S. Vrba,et al.  The Fossil Record and Evolution of Bovidae: State of the Field , 2009 .

[5]  J. Clack,et al.  Pederpes finneyae, an articulated tetrapod from the tournaisian of Western Scotland , 2005 .

[6]  R. Diogo,et al.  Development of fore- and hindlimb muscles in GFP-transgenic axolotls: morphogenesis, the tetrapod bauplan, and new insights on the forelimb-hindlimb enigma. , 2014, Journal of experimental zoology. Part B, Molecular and developmental evolution.

[7]  J. Bolt,et al.  A new primitive tetrapod, Whatcheeria deltae, from the Lower Carboniferous of Iowa , 1995 .

[8]  A. Kearsley,et al.  Early evolution of the lungfish pectoral-fin endoskeleton: evidence from the Middle Devonian (Givetian) Pentlandia macroptera , 2014, Front. Earth Sci..

[9]  William I. Sellers,et al.  Virtual palaeontology: Gait reconstruction of extinct vertebrates using high performance computing , 2009 .

[10]  P. Ahlberg,et al.  Comparative pelvic development of the axolotl (Ambystoma mexicanum) and the Australian lungfish (Neoceratodus forsteri): conservation and innovation across the fish-tetrapod transition , 2013, EvoDevo.

[11]  Neil H Shubin,et al.  The Early Evolution of the Tetrapod Humerus , 2004, Science.

[12]  H. J. Gamble Basic Structure and Evolution of Vertebrates. , 1981 .

[13]  M. Coates,et al.  Dates, nodes and character conflict: Addressing the Lissamphibian origin problem , 2007 .

[14]  E. Jarvik,et al.  The Devonian tetrapod Ichthyostega , 1996, Fossils and Strata.

[15]  M. Wills,et al.  Comparable disparity in the appendicular skeleton across the fish–tetrapod transition, and the morphological gap between fish and tetrapod postcrania , 2016 .

[16]  M. Herbin,et al.  An updated inventory of all known specimens of the coelacanth, Latimeria spp. , 2011 .

[17]  J. Clack,et al.  Ventastega curonica and the origin of tetrapod morphology , 2008, Nature.

[18]  D. Maddison,et al.  Mesquite: a modular system for evolutionary analysis. Version 2.6 , 2009 .

[19]  P. Manning,et al.  Pelvic and hindlimb myology of the basal archosaur Poposaurus gracilis (archosauria: Poposauroidea) , 2011, Journal of morphology.

[20]  J. Long,et al.  The structure of the sarcopterygian Onychodus jandemarrai n. sp. from Gogo, Western Australia: with a functional interpretation of the skeleton , 2005, Transactions of the Royal Society of Edinburgh: Earth Sciences.

[21]  P. Ahlberg,et al.  Tetrapod trackways from the early Middle Devonian period of Poland , 2010, Nature.

[22]  B. Wood,et al.  From fish to modern humans – comparative anatomy, homologies and evolution of the pectoral and forelimb musculature , 2009, Journal of anatomy.

[23]  J. Clack The Fish–Tetrapod Transition: New Fossils and Interpretations , 2009, Evolution: Education and Outreach.

[24]  Z. Johanson,et al.  STREPSODUS (RHIZODONTIDA, SARCOPTERYGII) PECTORAL ELEMENTS FROM THE LOWER CARBONIFEROUS DUCABROOK FORMATION, QUEENSLAND, AUSTRALIA , 2005 .

[25]  S. Sumida The appendicular skeleton of the Early Permian genus Labidosaurus (Reptilia, Captorhinomorpha, Captorhinidae) and the hind limb musculature of captorhinid reptiles , 1989 .

[26]  P. Ahlberg,et al.  Devonian rhizodontids and tristichopterids (Sarcopterygii; Tetrapodomorpha) from East Gondwana , 2001, Transactions of the Royal Society of Edinburgh: Earth Sciences.

[27]  Z. Johanson,et al.  REDESCRIPTION OF THE PECTORAL FIN AND VERTEBRAL COLUMN OF THE RHIZODONTID FISH BARAMEDA DECIPIENS FROM THE LOWER CARBONIFEROUS OF AUSTRALIA , 2005 .

[28]  O. A. Lebedev,et al.  The postcranial skeleton of the Devonian tetrapod Tulerpeton curtum Lebedev , 1995 .

[29]  Philip Anderson,et al.  First discovery of a primitive coelacanth fin fills a major gap in the evolution of lobed fins and limbs , 2007, Evolution & development.

[30]  Pectoral fins of rhizodontids and the evolution of pectoral appendages in the tetrapod stem-group , 2001 .

[31]  P. Ahlberg,et al.  Hidden morphological diversity among early tetrapods , 2017, Nature.

[32]  A. Romer The Appendicular Skeleton of the Permian Embolomerous Amphibian Archeria , 1957 .

[33]  J. Clack Devonian climate change, breathing, and the origin of the tetrapod stem group. , 2007, Integrative and comparative biology.

[34]  Catherine A. Boisvert The humerus of Panderichthys in three dimensions and its significance in the context of the fish–tetrapod transition , 2009 .

[35]  R. Diogo,et al.  Is evolutionary biology becoming too politically correct? A reflection on the scala naturae, phylogenetically basal clades, anatomically plesiomorphic taxa, and ‘lower’ animals , 2014, Biological reviews of the Cambridge Philosophical Society.

[36]  G. Osawa Beiträge zur Anatomie der Hatteria punctata , 1897 .

[37]  Philip M. Benson,et al.  Laboratory simulations of fluid/gas induced micro-earthquakes: application to volcano seismology , 2014, Front. Earth Sci..

[38]  M. Kumamoto,et al.  The pectoral fin muscles of the coelacanth Latimeria chalumnae: Functional and evolutionary implications for the fin‐to‐limb transition and subsequent evolution of tetrapods , 2016, Anatomical record.

[39]  R. Carroll The Importance of Recognizing Our Limited Knowledge of the Fossil Record in the Analysis of Phylogenetic Relationships among Early Tetrapods , 2012 .

[40]  P. Forey,et al.  Lungfishes, Tetrapods, Paleontology, and Plesiomorphy. , 1981 .

[41]  D. Russell Ostrich Dinosaurs from the Late Cretaceous of Western Canada , 1972 .

[42]  J. Hutchinson,et al.  Analysis of hindlimb muscle moment arms in Tyrannosaurus rex using a three-dimensional musculoskeletal computer model: implications for stance, gait, and speed , 2005, Paleobiology.

[43]  P. Ahlberg Humeral homology and the origin of the tetrapod elbow : a reinterpretation of the enigmatic specimens ANSP 21350 and GSM 104536 , 2011 .

[44]  A. Romer,et al.  The locomotor apparatus of certain primitive and mammal-like reptiles. Bulletin of the AMNH ; v. 46, article 10. , 1922 .

[45]  John R. Hutchinson,et al.  The evolution of femoral osteology and soft tissues on the line to extant birds (Neornithes) , 2001 .

[46]  Farish A. Jenkins,et al.  The pectoral fin of Tiktaalik roseae and the origin of the tetrapod limb , 2006, Nature.

[47]  N. Shubin,et al.  A Devonian Tetrapod from North America , 1994, Science.

[48]  J. Long A new rhizodontiform fish from the Early Carboniferous of Victoria, Australia, with remarks on the phylogenetic position of the group , 1989 .

[49]  William I. Sellers,et al.  Evaluating alternative gait strategies using evolutionary robotics , 2004, Journal of anatomy.

[50]  R. W. Miner The pectoral limb of Eryops and other primitive tetrapods. Bulletin of the AMNH ; v. 51, article 7. , 1925 .

[51]  Farish A. Jenkins,et al.  A Devonian tetrapod-like fish and the evolution of the tetrapod body plan , 2006, Nature.

[52]  Mariano Garcia,et al.  Tyrannosaurus was not a fast runner , 2002, Nature.

[53]  G. Retallack,et al.  Late Devonian tetrapod habitats indicated by palaeosols in Pennsylvania , 2009, Journal of the Geological Society.

[54]  Françoise Peyrin,et al.  3D Microstructural Architecture of Muscle Attachments in Extant and Fossil Vertebrates Revealed by Synchrotron Microtomography , 2013, PloS one.

[55]  J. Hutchinson Regular ArticleThe evolution of pelvic osteology and soft tissues on the line to extant birds (Neornithes) , 2001 .

[56]  P. Ahlberg,et al.  The pectoral fin of Panderichthys and the origin of digits , 2008, Nature.

[57]  D. Dilkes,et al.  Appendicular myology of the hadrosaurian dinosaur Maiasaura peeblesorum from the Late Cretaceous (Campanian) of Montana , 1999, Transactions of the Royal Society of Edinburgh: Earth Sciences.

[58]  A. Romer Pectoral limb musculature and shouldergirdler structure in fish and tetrapods , 1924 .

[59]  M. Coates,et al.  ROMER's gap: tetrapod origins and terrestriality , 1995 .

[60]  E. Francis,et al.  The Anatomy of the Salamander , 1935, Nature.

[61]  J. Clack,et al.  Life history of the stem tetrapod Acanthostega revealed by synchrotron microtomography , 2016, Nature.

[62]  W. Sellers,et al.  Sensitivity Analysis in Evolutionary Robotic Simulations of Bipedal Dinosaur Running , 2010 .

[63]  J. Clack,et al.  Contrasting Developmental Trajectories in the Earliest Known Tetrapod Forelimbs , 2009, Science.

[64]  H. Braus Die Muskeln und Nerven der Ceratodusflosse : ein Beitrag zur vergleichenden Morphologie der freien Gliedmaasse bei niederen Fischen und zur Archipterygiumtheorie , 1900 .

[65]  A. Milner,et al.  Postcranial remains of Baphetes and their bearing on the relationships of the Baphetidae (= Loxommatidae) , 1998 .

[66]  R. Diogo,et al.  Anatomy of the pectoral and forelimb muscles of wildtype and green fluorescent protein‐transgenic axolotls and comparison with other tetrapods including humans: a basis for regenerative, evolutionary and developmental studies , 2012, Journal of anatomy.

[67]  T. S. Westoll,et al.  IX.—The Postcranial Skeleton of Ensthenopteron foordi Whiteaves , 1970, Transactions of the Royal Society of Edinburgh.

[68]  R. Holmes The osteology and musculature of the pectoral limb of small captorhinids , 1977, Journal of morphology.

[69]  T. Smithson The morphology and relationships of the Carboniferous amphibian Eoherpeton watsoni Panchen , 1985 .

[70]  A. Russell,et al.  The Role of Phylogenetic Analysis in the Inference of Unpreserved Attributes of Extinct Taxa , 1992 .

[71]  N. Shubin,et al.  A NEW SPECIMEN OF SAURIPTERUS TAYLORI (SARCOPTERYGII, OSTEICHTHYES) FROM THE FAMENNIAN CATSKILL FORMATION OF NORTH AMERICA , 2004 .

[72]  E. Vorobyeva The shoulder girdle of Panderichthys rhombolepis (Gross) (Crossopterygii); Upper Devonian; Latvia , 1995 .

[73]  J. Hutchinson,et al.  Historical perspectives on the evolution of tetrapodomorph movement. , 2013, Integrative and comparative biology.

[74]  Roland B. Sookias,et al.  Redescription and Phylogenetic Analysis of the Mandible of an Enigmatic Pennsylvanian (Late Carboniferous) Tetrapod from Nova Scotia, and the Lability of Meckelian Jaw Ossification , 2014, PloS one.

[75]  V. Abdala,et al.  Muscles of Vertebrates: Comparative Anatomy, Evolution, Homologies and Development , 2010 .

[76]  J. Long,et al.  Crossopterygian fishes from the Devonian of Antarctica: systematics, relationships and biogeographic significance , 1992 .

[77]  W. Sellers,et al.  Estimating dinosaur maximum running speeds using evolutionary robotics , 2007, Proceedings of the Royal Society B: Biological Sciences.

[78]  Zerina Johanson,et al.  Osteolepiforms and the ancestry of tetrapods , 1998, Nature.

[79]  P. J. Bishop,et al.  The humerus of Ossinodus pueri, a stem tetrapod from the Carboniferous of Gondwana, and the early evolution of the tetrapod forelimb , 2014 .

[80]  Timothy Holland Pectoral girdle and fin anatomy of Gogonasus andrewsae long, 1985: Implications for tetrapodomorph limb evolution , 2013, Journal of morphology.

[81]  D. Wood,et al.  The scapulocoracoid of the Queensland lungfish Neoceratodus forsteri (Dipnoi: Sarcopterygii): morphology, development and evolutionary implications for bony fishes (Osteichthyes). , 2004, Zoology.

[82]  M. Coates,et al.  Chapter 2. Skeletal Changes in the Transition from Fins to Limbs , 2019 .

[83]  Martin D. Brazeau,et al.  Sequences, stratigraphy and scenarios: what can we say about the fossil record of the earliest tetrapods? , 2011, Proceedings of the Royal Society B: Biological Sciences.

[84]  A. Warren,et al.  THE APPENDICULAR SKELETON OF ERYOPS MEGACEPHALUS COPE, 1877 (TEMNOSPONDYLI: ERYOPOIDEA) FROM THE LOWER PERMIAN OF NORTH AMERICA , 2006, Journal of Paleontology.

[85]  Victor A Albert,et al.  The unique pseudanthium of Actinodium (Myrtaceae) - morphological reinvestigation and possible regulation by CYCLOIDEA-like genes , 2013, EvoDevo.

[86]  T. S. Westoll,et al.  XII.—The Postcranial Skeleton of Rhipidistian Fishes Excluding Eusthenopteron , 1970, Transactions of the Royal Society of Edinburgh.

[87]  J. Marshall,et al.  Phylogenetic and environmental context of a Tournaisian tetrapod fauna , 2016, Nature Ecology &Evolution.

[88]  M. Narkiewicz,et al.  The age of the oldest tetrapod tracks from Zachełmie, Poland , 2015 .

[89]  M. Coates,et al.  A supertree of early tetrapods , 2003, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[90]  G. Lauder,et al.  Lungfishes, Tetrapods, Paleontology, and Plesiomorphy , 1982 .

[91]  J. G. Mackin Studies on the morphology and life history of nematodes in the genus Spironoura. , 1936 .

[92]  Michel Laurin,et al.  FINS INTO LIMBS: EVOLUTION, DEVELOPMENT AND TRANSFORMATION , 2007, Copeia.

[93]  Brian K. Hall,et al.  Fins into limbs : evolution, development, and transformation , 2006 .

[94]  K. Angielczyk,et al.  Phylogenetic Stability, Tree Shape, and Character Compatibility: A Case Study Using Early Tetrapods. , 2016, Systematic biology.

[95]  L. Witmer 2 The Extant Phylogenetic Bracket and the importance of reconstructing soft tissues in fossils , 2007 .

[96]  R. Diogo,et al.  Characteristic tetrapod musculoskeletal limb phenotype emerged more than 400 MYA in basal lobe-finned fishes , 2016, Scientific Reports.

[97]  Michael I. Coates,et al.  The Devonian tetrapod Acanthostega gunnari Jarvik: postcranial anatomy, basal tetrapod interrelationships and patterns of skeletal evolution , 1996, Transactions of the Royal Society of Edinburgh: Earth Sciences.

[98]  F. Maestre,et al.  Plant life on gypsum: a review of its multiple facets , 2015, Biological reviews of the Cambridge Philosophical Society.

[99]  J. Hutchinson,et al.  Three-dimensional limb joint mobility in the early tetrapod Ichthyostega , 2012, Nature.

[100]  A. Panchen On the Amphibian Crassigyrinus scoticus Watson from the Carboniferous of Scotland , 1985 .