W-state Analyzer and Multi-party Measurement-device-independent Quantum Key Distribution

W-state is an important resource for many quantum information processing tasks. In this paper, we for the first time propose a multi-party measurement-device-independent quantum key distribution (MDI-QKD) protocol based on W-state. With linear optics, we design a W-state analyzer in order to distinguish the four-qubit W-state. This analyzer constructs the measurement device for four-party MDI-QKD. Moreover, we derived a complete security proof of the four-party MDI-QKD, and performed a numerical simulation to study its performance. The results show that four-party MDI-QKD is feasible over 150 km standard telecom fiber with off-the-shelf single photon detectors. This work takes an important step towards multi-party quantum communication and a quantum network.

[1]  I Lucio-Martinez,et al.  Real-world two-photon interference and proof-of-principle quantum key distribution immune to detector attacks. , 2013, Physical review letters.

[2]  Ryutaroh Matsumoto Multiparty quantum-key-distribution protocol without use of entanglement , 2007 .

[3]  Tzonelih Hwang,et al.  Provably Secure Three-Party Authenticated Quantum Key Distribution Protocols , 2007, IEEE Transactions on Dependable and Secure Computing.

[4]  H. Weinfurter,et al.  Free-Space distribution of entanglement and single photons over 144 km , 2006, quant-ph/0607182.

[5]  Christine Chen,et al.  Quantum hacking: Experimental demonstration of time-shift attack against practical quantum-key-distribution systems , 2007, 0704.3253.

[6]  M. Curty,et al.  Secure quantum key distribution , 2014, Nature Photonics.

[7]  M. Fejer,et al.  Experimental measurement-device-independent quantum key distribution. , 2012, Physical review letters.

[8]  Won-Young Hwang Quantum key distribution with high loss: toward global secure communication. , 2003, Physical review letters.

[9]  Andrew Chi-Chih Yao,et al.  Quantum cryptography with imperfect apparatus , 1998, Proceedings 39th Annual Symposium on Foundations of Computer Science (Cat. No.98CB36280).

[10]  Hoi-Kwong Lo,et al.  Measurement-Device-Independent Quantum Cryptography , 2014, IEEE Journal of Selected Topics in Quantum Electronics.

[11]  H. Weinfurter,et al.  Entanglement-based quantum communication over 144km , 2007 .

[12]  Xiang‐Bin Wang,et al.  Beating the PNS attack in practical quantum cryptography , 2004 .

[13]  Feihu Xu,et al.  Experimental demonstration of phase-remapping attack in a practical quantum key distribution system , 2010, 1005.2376.

[14]  B. Moor,et al.  Four qubits can be entangled in nine different ways , 2001, quant-ph/0109033.

[15]  N. Gisin,et al.  Pulsed Energy-Time Entangled Twin-Photon Source for Quantum Communication , 1999 .

[16]  Xiongfeng Ma,et al.  ar X iv : q ua ntp h / 05 12 08 0 v 2 1 1 A pr 2 00 6 TIMESHIFT ATTACK IN PRACTICAL QUANTUM , 2005 .

[17]  Jean-Daniel Bancal,et al.  Robust self testing of the 3-qubit W state , 2014, 1407.5769.

[18]  M. Curty,et al.  Measurement-device-independent quantum key distribution. , 2011, Physical review letters.

[19]  Takashi Yamamoto,et al.  CORRIGENDUM: Measurement-device-independent quantum key distribution for Scarani-Acin-Ribordy-Gisin 04 protocol , 2014, Scientific Reports.

[20]  Xiongfeng Ma,et al.  Statistical fluctuation analysis for measurement-device-independent quantum key distribution , 2012, 1210.3929.

[21]  F. Marsili,et al.  Detecting single infrared photons with 93% system efficiency , 2012, 1209.5774.

[22]  Christian Kurtsiefer,et al.  Full-field implementation of a perfect eavesdropper on a quantum cryptography system. , 2010, Nature communications.

[23]  G. Milburn,et al.  Linear optical quantum computing with photonic qubits , 2005, quant-ph/0512071.

[24]  Gilles Brassard,et al.  Secret-Key Reconciliation by Public Discussion , 1994, EUROCRYPT.

[25]  Ekert,et al.  Quantum cryptography based on Bell's theorem. , 1991, Physical review letters.

[26]  Qiaoyan Wen,et al.  Finite-key analysis for measurement-device-independent quantum key distribution , 2012 .

[27]  Xiang‐Bin Wang,et al.  Three-intensity decoy-state method for device-independent quantum key distribution with basis-dependent errors , 2012, 1207.0392.

[28]  J. Skaar,et al.  Hacking commercial quantum cryptography systems by tailored bright illumination , 2010, 1008.4593.

[29]  Jesus Martinez Mateo,et al.  Information Reconciliation for Quantum Key Distribution , 2010 .

[30]  Biham,et al.  Quantum cryptographic network based on quantum memories. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[31]  N. Lutkenhaus,et al.  Bell measurements for teleportation , 1998, quant-ph/9809063.

[32]  Feihu Xu,et al.  Protocol choice and parameter optimization in decoy-state measurement-device-independent quantum key distribution , 2014, 1406.0188.

[33]  Jean Pierre von der Weid,et al.  Real-time monitoring of single-photon detectors against eavesdropping in quantum key distribution systems. , 2012, Optics express.

[34]  H. Weinfurter,et al.  Quantum eavesdropping without interception: an attack exploiting the dead time of single-photon detectors , 2011, 1101.5289.

[35]  Chun-Mei Zhang,et al.  Improved statistical fluctuation analysis for measurement-device-independent quantum key distribution , 2012 .

[36]  J. F. Dynes,et al.  Resilience of gated avalanche photodiodes against bright illumination attacks in quantum cryptography , 2011, 1106.2675.

[37]  Hoi-Kwong Lo,et al.  Conference key agreement and quantum sharing of classical secrets with noisy GHZ states , 2005, Proceedings. International Symposium on Information Theory, 2005. ISIT 2005..

[38]  Gilles Brassard,et al.  Quantum cryptography: Public key distribution and coin tossing , 2014, Theor. Comput. Sci..

[39]  M. Koashi,et al.  Polarization-entangled W state using parametric down-conversion , 2002, quant-ph/0208162.

[40]  V. N. Gorbachev,et al.  On multiparticle W states, their implementations and application in the quantum informational problems , 2006 .

[41]  Christian Kurtsiefer,et al.  Experimental realization of a three-qubit entangled W state. , 2004, Physical review letters.

[42]  T. F. D. Silva,et al.  Proof-of-principle demonstration of measurement-device-independent quantum key distribution using polarization qubits , 2012, 1207.6345.

[43]  Feihu Xu,et al.  Practical aspects of measurement-device-independent quantum key distribution , 2013, 1305.6965.

[44]  Sellami Ali,et al.  DECOY STATE QUANTUM KEY DISTRIBUTION , 2010 .

[45]  Yao Fu,et al.  Long-distance measurement-device-independent multiparty quantum communication. , 2014, Physical review letters.

[46]  Xiongfeng Ma,et al.  Alternative schemes for measurement-device-independent quantum key distribution , 2012, 1204.4856.

[47]  Gerd Leuchs,et al.  Device calibration impacts security of quantum key distribution. , 2011, Physical review letters.

[48]  J. Cirac,et al.  Three qubits can be entangled in two inequivalent ways , 2000, quant-ph/0005115.

[49]  Qin Wang,et al.  Simulating of the measurement-device independent quantum key distribution with phase randomized general sources , 2014, Scientific Reports.

[50]  N Gisin,et al.  Quantum teleportation with a three-Bell-state analyzer. , 2005, Physical review letters.

[51]  Hoi-Kwong Lo,et al.  Multi-partite quantum cryptographic protocols with noisy GHZ States , 2007, Quantum Inf. Comput..

[52]  Miguel Navascues,et al.  Device-independent tomography of multipartite quantum states , 2014, 1407.5911.

[53]  Li Qian,et al.  Experimental demonstration of polarization encoding measurement-device-independent quantum key distribution. , 2013, Physical review letters.

[54]  Ping Xu,et al.  Implementation of a measurement-device-independent entanglement witness. , 2014, Physical review letters.

[55]  Norbert Lütkenhaus,et al.  Security proof of quantum key distribution with detection-efficiency mismatch , 2017 .

[56]  V. Scarani,et al.  Device-independent security of quantum cryptography against collective attacks. , 2007, Physical review letters.

[57]  S. Fei,et al.  Identification of three-qubit entanglement , 2013, 1301.4317.

[58]  Shor,et al.  Simple proof of security of the BB84 quantum key distribution protocol , 2000, Physical review letters.

[59]  Vadim Makarov,et al.  Avoiding the blinding attack in QKD , 2010 .

[60]  J. Skaar,et al.  Laser damage helps the eavesdropper in quantum cryptography. , 2013, Physical review letters.

[61]  P. Petroff,et al.  A quantum dot single-photon turnstile device. , 2000, Science.

[62]  Charles H. Bennett,et al.  WITHDRAWN: Quantum cryptography: Public key distribution and coin tossing , 2011 .