Steroid receptor coactivator-1 is a histone acetyltransferase

[1]  G. Jenster,et al.  Steroid receptor induction of gene transcription: a two-step model. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[2]  A. Wolffe,et al.  Determinants of chromatin disruption and transcriptional regulation instigated by the thyroid hormone receptor: hormone‐regulated chromatin disruption is not sufficient for transcriptional activation , 1997, The EMBO journal.

[3]  S. Berger,et al.  Histone acetyltransferase activity and interaction with ADA2 are critical for GCN5 function in vivo , 1997, The EMBO journal.

[4]  Andrew J. Bannister,et al.  The TAFII250 Subunit of TFIID Has Histone Acetyltransferase Activity , 1996, Cell.

[5]  Andrew J. Bannister,et al.  The CBP co-activator is a histone acetyltransferase , 1996, Nature.

[6]  B. Howard,et al.  The Transcriptional Coactivators p300 and CBP Are Histone Acetyltransferases , 1996, Cell.

[7]  G. Felsenfeld,et al.  Chromatin structure and gene expression. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[8]  B. O’Malley,et al.  CREB binding protein acts synergistically with steroid receptor coactivator-1 to enhance steroid receptor-dependent transcription. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[9]  B. Howard,et al.  A p300/CBP-associated factor that competes with the adenoviral oncoprotein E1A , 1996, Nature.

[10]  Thorsten Heinzel,et al.  A CBP Integrator Complex Mediates Transcriptional Activation and AP-1 Inhibition by Nuclear Receptors , 1996, Cell.

[11]  A. Wolffe,et al.  Histone Deacetylase--A Regulator of Transcription , 1996, Science.

[12]  S. Schreiber,et al.  A Mammalian Histone Deacetylase Related to the Yeast Transcriptional Regulator Rpd3p , 1996, Science.

[13]  R. Kingston,et al.  Repression and activation by multiprotein complexes that alter chromatin structure. , 1996, Genes & development.

[14]  C. Allis,et al.  Special HATs for special occasions: linking histone acetylation to chromatin assembly and gene activation. , 1996, Current opinion in genetics & development.

[15]  C. Allis,et al.  Tetrahymena Histone Acetyltransferase A: A Homolog to Yeast Gcn5p Linking Histone Acetylation to Gene Activation , 1996, Cell.

[16]  Alan P. Wolffe,et al.  Targeting Chromatin Disruption: Transcription Regulators that Acetylate Histones , 1996, Cell.

[17]  W. Sellers,et al.  A potent transrepression domain in the retinoblastoma protein induces a cell cycle arrest when bound to E2F sites. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[18]  B. O’Malley,et al.  Sequence and Characterization of a Coactivator for the Steroid Hormone Receptor Superfamily , 1995, Science.

[19]  A. Wolffe,et al.  A role for nucleosome assembly in both silencing and activation of the Xenopus TR beta A gene by the thyroid hormone receptor. , 1995, Genes & development.

[20]  C. Allis,et al.  An activity gel assay detects a single, catalytically active histone acetyltransferase subunit in Tetrahymena macronuclei. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[21]  M. Beato,et al.  Hormone induces binding of receptors and transcription factors to a rearranged nucleosome on the MMTV promoter in vivo. , 1995, The EMBO journal.

[22]  細井 岳 Low frequency of the p53 gene mutations in neuroblastoma , 1995 .

[23]  M. Oren,et al.  Biochemical properties and biological effects of p53. , 1995, Current opinion in genetics & development.

[24]  P. Jeffrey,et al.  Crystal structure of a p53 tumor suppressor-DNA complex: understanding tumorigenic mutations. , 1994, Science.

[25]  A. Wolffe,et al.  Nucleosome positioning and modification: chromatin structures that potentiate transcription. , 1994, Trends in biochemical sciences.

[26]  E. Flemington,et al.  DNA-binding-defective mutants of the Epstein-Barr virus lytic switch activator Zta transactivate with altered specificities , 1994, Molecular and cellular biology.

[27]  M. Schwab,et al.  There may be two tumor suppressor genes on chromosome arm Ip closely associated with biologically distinct subtypes of neuroblastoma , 1994, Genes, chromosomes & cancer.

[28]  K. Kinzler,et al.  Sequence-specific transcriptional activation is essential for growth suppression by p53. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[29]  J. Pelletier,et al.  Absence of p53 gene mutations in primary neuroblastomas. , 1993, Cancer research.

[30]  D. Reinberg,et al.  Interaction of human thyroid hormone receptor beta with transcription factor TFIIB may mediate target gene derepression and activation by thyroid hormone. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[31]  F. McKeon,et al.  Human wee1 maintains mitotic timing by protecting the nucleus from cytoplasmically activated cdc2 kinase , 1993, Cell.

[32]  Rogier Versteeg,et al.  Allelic loss of chromosome 1p36 in neuroblastoma is of preferential maternal origin and correlates with N–myc amplification , 1993, Nature Genetics.

[33]  S. Ben‐Sasson,et al.  Identification of programmed cell death in situ via specific labeling of nuclear DNA fragmentation , 1992, The Journal of cell biology.

[34]  W. Kaelin,et al.  Identification of a growth suppression domain within the retinoblastoma gene product. , 1992, Genes & development.

[35]  G. Hager,et al.  Transcription factor loading on the MMTV promoter: a bimodal mechanism for promoter activation. , 1992, Science.

[36]  B. Vogelstein,et al.  p53 mutations in human cancers. , 1991, Science.

[37]  A. Levine,et al.  The p53 tumour suppressor gene , 1991, Nature.

[38]  B. Vogelstein,et al.  Suppression of human colorectal carcinoma cell growth by wild-type p53. , 1990, Science.

[39]  B. O’Malley,et al.  The progesterone receptor stimulates cell-free transcription by enhancing the formation of a stable preinitiation complex , 1990, Cell.

[40]  J. Tam,et al.  Synthetic peptide vaccine design: synthesis and properties of a high-density multiple antigenic peptide system. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[41]  H. Okayama,et al.  High-efficiency transformation of mammalian cells by plasmid DNA. , 1987, Molecular and cellular biology.

[42]  A. van der Eb,et al.  A new technique for the assay of infectivity of human adenovirus 5 DNA. , 1973, Virology.

[43]  A. Wolffe,et al.  Histone acetyltransferases in control. , 1997, Current biology : CB.

[44]  C. Prives,et al.  Erratum: Cooperative DNA binding of p53 with TFIID (TBP): A possible mechanism for transcriptional activation (Genes and Development 7 (1837- 1849)) , 1993 .

[45]  A. Baniahmad,et al.  転写因子TF II Bとヒト甲状腺ホルモン受容体βとの結合は標的遺伝子の発現と甲状腺ホルモンによる活性化を仲介する , 1993 .

[46]  K. Kinzler,et al.  Oncogenic forms of p53 inhibit p53-regulated gene expression. , 1992, Science.