Abel inversion using total-variation regularization

In the case of radiography of a cylindrically symmetric object, the Abel transform is useful for describing the tomographic measurement operator. The inverse of this operator is unbounded, so regularization is required for the computation of satisfactory inversions. We introduce the use of the total variation seminorm for this purpose, and prove the existence and uniqueness of solutions of the corresponding variational problem. We illustrate the effectiveness of the total-variation regularization with an example and comparison with the unregularized inverse and the H1 regularized inverse.

[1]  Ronald F. Gariepy FUNCTIONS OF BOUNDED VARIATION AND FREE DISCONTINUITY PROBLEMS (Oxford Mathematical Monographs) , 2001 .

[2]  L. Ambrosio,et al.  Functions of Bounded Variation and Free Discontinuity Problems , 2000 .

[3]  T. Chan,et al.  On the Convergence of the Lagged Diffusivity Fixed Point Method in Total Variation Image Restoration , 1999 .

[4]  Curtis R. Vogel,et al.  Iterative Methods for Total Variation Denoising , 1996, SIAM J. Sci. Comput..

[5]  L. Rudin,et al.  Nonlinear total variation based noise removal algorithms , 1992 .

[6]  L. Evans Measure theory and fine properties of functions , 1992 .

[7]  D. Whittaker,et al.  A Course in Functional Analysis , 1991, The Mathematical Gazette.

[8]  G. Pretzier,et al.  A New Method for Numerical Abel-Inversion , 1991 .

[9]  W. S. Sheldrick,et al.  Darstellung und Kristallstrukturen von Phenyliodoantimonaten(III). Strukturkorrelation für Halogenoantimonate(III) / Preparation and Crystal Structures of Phenyliodoantimonates(III). Structural Correlation for Haloantimonates(III) , 1991 .

[10]  Dennis Keefer,et al.  Abel inversion using transform techniques , 1988 .

[11]  R. Birkebak,et al.  Application of the Abel integral equation to spectrographic data. , 1966, Applied optics.

[12]  C. D. Maldonado,et al.  New Method for Obtaining Emission Coefficients from Emitted Spectral Intensities. Part I—Circularly Symmetric Light Sources* , 1965 .

[13]  A. N. Tikhonov,et al.  REGULARIZATION OF INCORRECTLY POSED PROBLEMS , 1963 .