Understanding resistance to amorphization by radiation damage

Decades of experimental and theoretical studies have brought some useful insights about what defines resistance to amorphization by radiation damage; however, the problem is still viewed as generally unsolved. I review ideas and concepts that have been put forward to help with understanding this problem. I then discuss how the type of interatomic force is relevant for resistance to amorphization, with covalency of bonding stabilizing the damage and making material amorphizable. On a more detailed level, I suggest that resistance to amorphization of a complex non-metallic material is defined by the competition between the short-range covalent and long-range ionic forces. I follow this with a review of experimental data on 116 materials, to illustrate that the type of interatomic force can generally explain the resistance to amorphization. I conclude by discussing how the proposed picture is related to models proposed previously, and by suggesting some possible future research.

[1]  W. Ching,et al.  First‐Principles Calculation of Electronic, Optical, and Structural Properties of α‐Al2O3 , 1994 .

[2]  R. Grimes,et al.  Radiation induced amorphization resistance in A2O3–BO2 oxides , 2002 .

[3]  M. O. Manasreh,et al.  Ion-beam-produced damage and its stability in AlN films , 2002 .

[4]  A. M. Stoneham,et al.  Innovative materials for fusion power plant structures: separating functions , 2004 .

[5]  S. Mankefors Reversed trend in polarity for alkaline earth oxides - an ab initio study , 2000 .

[6]  W. Bolse Amorphization and recrystallization of covalent tetrahedral networks , 1999 .

[7]  Chelikowsky,et al.  Structural and electronic properties of titanium dioxide. , 1992, Physical review. B, Condensed matter.

[8]  R. Ewing,et al.  The amorphization of complex silicates by ion-beam irradiation , 1992 .

[9]  R. Ewing,et al.  Temperature dependence of Kr ion-induced amorphization of mica minerals , 1998 .

[10]  E. Salje,et al.  Large swelling and percolation in irradiated zircon , 2003 .

[11]  R. Ewing,et al.  Displacive radiation effects in the monazite- and zircon-structure orthophosphates , 1997 .

[12]  J. C. Phillips,et al.  Topology of covalent non-crystalline solids I: Short-range order in chalcogenide alloys , 1979 .

[13]  A. E. Ringwood,et al.  Immobilisation of high level nuclear reactor wastes in SYNROC , 1979, Nature.

[14]  Pacchioni,et al.  Measures of ionicity of alkaline-earth oxides from the analysis of ab initio cluster wave functions. , 1993, Physical review. B, Condensed matter.

[15]  W. Hückel,et al.  Structural chemistry of inorganic compounds , 1950 .

[16]  S. Kucheyev,et al.  Ion-beam-induced dissociation and bubble formation in GaN , 2000 .

[17]  W. Weber,et al.  Plutonium Immobilization and Radiation Effects , 2000, Science.

[18]  W. Bolse Formation and development of disordered networks in Si-based ceramics under ion bombardment , 1998 .

[19]  V. Stubican,et al.  Ionic Conductivity of the Fluorite‐Type Hafnia–R2O3 Solid Solutions , 1991 .

[20]  Lumin Wang,et al.  Ion irradiation-induced phase transformation of pyrochlore and zirconolite , 1999 .

[21]  William J. Weber,et al.  Radiation stability of gadolinium zirconate: A waste form for plutonium disposition , 1999 .

[22]  F. Illas,et al.  Valence bond reading of ab initio molecular orbital cluster model wavefunctions: the nature of chemical bond in corundum , 1994 .

[23]  E. Salje,et al.  Atomistic modelling of radiation damage in zircon , 2001 .

[24]  Hartmann,et al.  Radiation tolerance of complex oxides , 2000, Science.

[25]  K. Tietze,et al.  Ein umlaufsystem zur kontinuierlichen aktivierung flüssiger und gasförmiger proben. Insbesondere an elektronenbeschleunigern , 1971 .

[26]  R. Ewing,et al.  Ion beam induced amorphization of monazite , 1996 .

[27]  Gilmer,et al.  Structural transformations and defect production in ion implanted silicon: a molecular dynamics simulation study. , 1995, Physical review letters.

[28]  R. Ewing,et al.  Comparison of Ion‐Beam Irradiation Effects in X2YO4 Compounds , 2004 .

[29]  García,et al.  First-principles ionicity scales. I. Charge asymmetry in the solid state. , 1993, Physical review. B, Condensed matter.

[30]  R. Ewing,et al.  Irradiation-induced amorphization of AlPO4 , 1996 .

[31]  R. Ewing,et al.  Amorphization of ceramic materials by ion beam irradiation , 1998 .

[32]  V. Stubican,et al.  Ionic conductivity in the hafnia-R2O3 systems , 1991 .

[33]  S. Matsumoto,et al.  Aging Effects on Curium‐Doped Titanate Ceramic Containing Sodium‐Bearing High‐Level Nuclear Waste , 1992 .

[34]  H. Matzke INERT GAS DIFFUSION AND RADIATION DAMAGE IN IONIC CRYSTALS AND SINTERS FOLLOWING ION BOMBARDMENT. , 1968 .

[35]  Mo Li,et al.  Disorder-induced amorphization , 1997 .

[36]  M. Nastasi,et al.  Radiation Damage Effects in Zirconia. , 1999 .

[37]  E. Wendler,et al.  Comparative study of damage production in ion implanted III–V-compounds at temperatures from 20 to 420 K , 1999 .

[38]  D. Bacon Defect Production in Irradiated Metals: Insight from Computer Simulation , 1996 .

[39]  M. Nastasi,et al.  Structure and mechanical properties of irradiated magnesium aluminate spinel , 1996 .

[40]  J. C. Phillips Ionicity of the Chemical Bond in Crystals , 1970 .

[41]  F. Illas,et al.  Can corundum be described as an ionic oxide , 1993 .

[42]  E. Salje,et al.  Structural changes in zircon under α-decay irradiation , 2002 .

[43]  Jie Lian,et al.  Ion beam irradiation in La2Zr2O7–Ce2Zr2O7 pyrochlore , 2004 .

[44]  Orlando,et al.  Ab initio Hartree-Fock study of tetragonal and cubic phases of zirconium dioxide. , 1992, Physical review. B, Condensed matter.

[45]  M. Uhrmacher,et al.  Ion implanted dopants in GaN and AlN: Lattice sites, annealing behavior, and defect recovery , 2000 .

[46]  R. Ewing,et al.  Nano-scale glass formation in pyrochlore by heavy ion irradiation , 2000 .

[47]  J. Keinonen,et al.  Molecular dynamics study of damage accumulation in GaN during ion beam irradiation , 2003 .

[48]  A. Stoneham Radiation effects in insulators , 1994 .

[49]  K. Nordlund,et al.  Mechanisms of ion beam mixing in metals and semiconductors , 1998 .

[50]  L. Cartz,et al.  Damage cross-sections of heavy ions in crystal structures , 1982 .

[51]  Martin T. Dove,et al.  Radiation damage effects and percolation theory , 2004 .

[52]  A. E. Ringwood,et al.  The SYNROC process: A geochemical approach to nuclear waste immobilization. , 1979 .

[53]  M. Nastasi,et al.  Ion beam radiation damage effects in rutile (TiO2) , 1998 .

[54]  T. Hartmann,et al.  A comparison between radiation damage accumulation in oxides with pyrochlore and fluorite structures , 2000 .

[55]  M. Yagovkina,et al.  Behavior of 238 Pu-Doped Ceramics Based on Cubic Zirconia and Pyrochlore under Radiation Damage , 2002 .

[56]  E. Artacho,et al.  Radiation damage effects in the perovskiteCaTiO3and resistance of materials to amorphization , 2004 .

[57]  Jian Chen,et al.  Radiation-induced amorphization of rare-earth titanate pyrochlores , 2003 .

[58]  S. Zinkle,et al.  Heavy-ion irradiation effects in the ABO{sub 4} orthosilicates: Decomposition, amorphization, and recrystallization , 1999 .

[59]  Jie Lian,et al.  Ion-beam irradiation of Gd_2Sn_2O_7 and Gd_2Hf_2O_7 pyrochlore: Bond-type effect , 2004 .

[60]  Ekhard K. H. Salje,et al.  The degree and nature of radiation damage in zircon observed by 29Si nuclear magnetic resonance , 2001 .

[61]  R. Withers,et al.  The oxygen positional parameter in pyrochlores and its dependence on disorder. , 2002 .

[62]  H. Matzke Radiation damage in crystalline insulators, oxides and ceramic nuclear fuels , 1982 .

[63]  J. C. Phillips Microscopic theory of covalent-ionic transition of amorphizability of nonmetallic solids , 1984 .

[64]  L. Pauling The Nature Of The Chemical Bond , 1939 .

[65]  F. Mauri,et al.  The aperiodic states of zircon: an ab initio molecular dynamics study , 2003 .

[66]  King,et al.  Role of thermal spikes in energetic displacement cascades. , 1987, Physical review letters.

[67]  L. Wang,et al.  Effect of temperature and recoil-energy spectra on irradiation-induced amorphization in Ca2La8(SiO4)6O2 , 1994 .

[68]  R. Ewing,et al.  Ion irradiation of rare-earth- and yttrium-titanate-pyrochlores , 2000 .

[69]  R. Ewing,et al.  A comparison of radiation effects in crystalline ABO4 -type phosphates and silicates , 2000, Mineralogical Magazine.

[70]  E. Wendler,et al.  Investigation of the amorphization process in ion implanted AIIIBV compounds , 1992 .

[71]  S. Zinkle,et al.  Influence of irradiation spectrum and implanted ions on the amorphization of ceramics , 1995 .

[72]  Jansen Electronic structure of cubic and tetragonal zirconia. , 1991, Physical review. B, Condensed matter.

[73]  G Taubes,et al.  No easy way to shackle the nuclear demon. , 1994, Science.

[74]  Roger Kelly,et al.  Criteria for bombardment-induced structural changes in non-metallic solids , 1975 .

[75]  T. D. Rubia,et al.  Molecular dynamics computer simulations of displacement cascades in metals , 1994 .

[76]  Jie Lian,et al.  Nuclear waste disposal—pyrochlore (A2B2O7): Nuclear waste form for the immobilization of plutonium and “minor” actinides , 2004 .

[77]  M. Nastasi,et al.  Ion irradiation damage in ilmenite at 100 K , 1997 .

[78]  Neil L. Allan,et al.  Displacement cascades in Gd2Ti2O7 and Gd2Zr2O7: a molecular dynamics study , 2002 .

[79]  Chennupati Jagadish,et al.  Damage Buildup in GaN under Ion Bombardment , 2000 .

[80]  T. Girardeau,et al.  Structural characterization of ZrN implanted with high Co fluences , 1999 .

[81]  Jie Lian,et al.  Ion-irradiation-induced amorphization of La 2 Zr 2 O 7 pyrochlore , 2002 .

[82]  Hsieh,et al.  Effect of temperature on the dynamics of energetic displacement cascades: A molecular dynamics study. , 1989, Physical review. B, Condensed matter.

[83]  X. Gonze,et al.  Dynamical atomic charges: The case of ABO(3) compounds , 1998 .

[84]  CRYOGENIC RADIATION RESPONSE OF SAPPHIRE , 1998 .

[85]  R. Ewing,et al.  Ion beam-induced amorphization in MgO–Al2O3–SiO2. I. Experimental and theoretical basis , 1998 .

[86]  L. Hobbs The role of topology and geometry in the irradiation-induced amorphization of network structures , 1995 .

[87]  P. Lu,et al.  Damage evolution in Xe-ion irradiated rutile (TiO2) single crystals , 2000 .

[88]  Steven J. Zinkle,et al.  Effect of irradiation spectrum on the microstructural evolution in ceramic insulators , 1995 .

[89]  E. Salje,et al.  Impact of self-irradiation damage on the aqueous durability of zircon(ZrSiO4):implications for its suitability as a nuclear waste form , 2003 .

[90]  W. J. Weber,et al.  Amorphization of complex ceramics by heavy-particle irradiations , 1994 .

[91]  R. Ewing,et al.  Ion irradiation-induced amorphization of two GeO2 polymorphs , 2001 .

[92]  D. Wales A Microscopic Basis for the Global Appearance of Energy Landscapes , 2001, Science.

[93]  R. Ewing,et al.  Effects of ionizing and displacive irradiation on several perovskite-structure oxides , 1998 .

[94]  R. Averback,et al.  Displacement damage in irradiated metals and semiconductors , 1997 .

[95]  E. Maddrell Generalized Titanate Ceramic Waste Form for Advanced Purex Reprocessing , 2001 .

[96]  F. Clinard Review of self-irradiation effects in Pu-substituted zirconolite , 1985 .

[97]  D. Lin,et al.  Electronic structure of rutile (TiO2) , 1993 .

[98]  R. Ewing,et al.  Ion beam-induced amorphization in MgO–Al2O3–SiO2. II. Empirical model , 1998 .

[99]  L. Hobbs Topology and geometry in the irradiation-induced amorphization of insulators , 1994 .

[100]  J. C. Phillips,et al.  Topology of covalent non-crystalline solids II: Medium-range order in chalcogenide alloys and ASi(Ge) , 1981 .

[101]  R. Grimes,et al.  Disorder processes in A3+B3+O3 compounds: implications for radiation tolerance , 2004 .

[102]  S. Kucheyev,et al.  Dynamic annealing in III-nitrides under ion bombardment , 2004 .

[103]  S. Kucheyev,et al.  Ion-beam-produced structural defects in ZnO , 2003 .

[104]  J. Keinonen,et al.  Heat spike effects on ion beam mixing , 2000 .

[105]  Steven J. Zinkle,et al.  Radiation effects in ceramics , 1994 .

[106]  Steven J. Zinkle,et al.  Microstructure of ion irradiated ceramic insulators , 1994 .

[107]  M. Nastasi,et al.  In situ study of ion-beam induced lattice damage in calcium fluoride crystals , 1997 .

[108]  H. Limbach,et al.  Poor-solvent polyelectrolytes , 2003 .

[109]  R. Evarestov,et al.  Full inclusion of symmetry in constructing Wannier functions: Chemical bonding in MgO and TiO2 crystals , 2003 .

[110]  Steven J. Zinkle,et al.  On the conflicting roles of ionizing radiation in ceramics , 2002 .

[111]  R. Heimann,et al.  Cubic zirconia as a candidate waste form for actinides: Dissolution studies , 1988 .

[112]  M. Meshii,et al.  Atomistic simulation of radiation-induced amorphization of the ordered compound NiZr , 1993 .

[113]  A. Stoneham,et al.  Ionicity in solids , 1983 .

[114]  Ching,et al.  Self-consistent band structures, charge distributions, and optical-absorption spectra in MgO, alpha -Al2O3, and MgAl2O4. , 1991, Physical review. B, Condensed matter.

[115]  R. Ewing,et al.  Ion irradiation-induced amorphization of six zirconolite compositions , 2000 .

[116]  C. White,et al.  Ion implantation and annealing of crystalline oxides , 1989 .