Efficient and stable planar heterojunction perovskite solar cells with an MoO3/PEDOT:PSS hole transporting layer.

UNLABELLED A solution processed MoO3/PEDOT:PSS bilayer structure is used as the hole transporting layer to improve the efficiency and stability of planar heterojunction perovskite solar cells. Increased hole extraction efficiency and restrained erosion of ITO by PEDOT PSS are demonstrated in the optimized device due to the incorporation of an MoO3 layer.

[1]  E. Marshall USDA admits "mistake" in doctoring study. , 1990, Science.

[2]  M.J.A. de Voigt,et al.  Stability of the interface between indium-tin-oxide and poly(3,4-ethylenedioxythiophene)/poly(styrenesulfonate) in polymer light-emitting diodes , 2000 .

[3]  Yoshiki Kinoshita,et al.  Formation of Ohmic hole injection by inserting an ultrathin layer of molybdenum trioxide between indium tin oxide and organic hole-transporting layers , 2007 .

[4]  Do-Young Kim,et al.  The effect of molybdenum oxide interlayer on organic photovoltaic cells , 2009 .

[5]  Tsutomu Miyasaka,et al.  Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. , 2009, Journal of the American Chemical Society.

[6]  Jens Meyer,et al.  MoO3 Films Spin‐Coated from a Nanoparticle Suspension for Efficient Hole‐Injection in Organic Electronics , 2011, Advanced materials.

[7]  Barry P Rand,et al.  Electrode Considerations for the Optical Enhancement of Organic Bulk Heterojunction Solar Cells , 2011 .

[8]  Nam-Gyu Park,et al.  6.5% efficient perovskite quantum-dot-sensitized solar cell. , 2011, Nanoscale.

[9]  Fan Li,et al.  Efficient bulk heterojunction polymer solar cells using PEDOT/PSS doped with solution-processed MoO3 as anode buffer layer , 2012 .

[10]  N. Park,et al.  Lead Iodide Perovskite Sensitized All-Solid-State Submicron Thin Film Mesoscopic Solar Cell with Efficiency Exceeding 9% , 2012, Scientific Reports.

[11]  Yang Yang,et al.  Solution Processed MoO3 Interfacial Layer for Organic Photovoltaics Prepared by a Facile Synthesis Method , 2012, Advanced materials.

[12]  J. Teuscher,et al.  Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide Perovskites , 2012, Science.

[13]  Henry J. Snaith,et al.  Efficient planar heterojunction perovskite solar cells by vapour deposition , 2013, Nature.

[14]  Tzung-Fang Guo,et al.  CH3NH3PbI3 Perovskite/Fullerene Planar‐Heterojunction Hybrid Solar Cells , 2013, Advanced materials.

[15]  U. Würfel,et al.  In Situ Formation of MoO3 in PEDOT:PSS Matrix: A Facile Way to Produce a Smooth and Less Hygroscopic Hole Transport Layer for Highly Stable Polymer Bulk Heterojunction Solar Cells , 2013 .

[16]  M. Grätzel,et al.  Sequential deposition as a route to high-performance perovskite-sensitized solar cells , 2013, Nature.

[17]  M. Grätzel,et al.  Title: Long-Range Balanced Electron and Hole Transport Lengths in Organic-Inorganic CH3NH3PbI3 , 2017 .

[18]  Laura M. Herz,et al.  Electron-Hole Diffusion Lengths Exceeding 1 Micrometer in an Organometal Trihalide Perovskite Absorber , 2013, Science.

[19]  Feng Huang,et al.  CH₃NH₃PbI₃-based planar solar cells with magnetron-sputtered nickel oxide. , 2014, ACS applied materials & interfaces.

[20]  Zhuang Liu,et al.  Efficient planar heterojunction perovskite solar cells employing graphene oxide as hole conductor. , 2014, Nanoscale.

[21]  Tomas Leijtens,et al.  Carbon nanotube/polymer composites as a highly stable hole collection layer in perovskite solar cells. , 2014, Nano letters.

[22]  Sung Cheol Yoon,et al.  Benefits of very thin PCBM and LiF layers for solution-processed p–i–n perovskite solar cells , 2014 .

[23]  Yongli Gao,et al.  Understanding the formation and evolution of interdiffusion grown organolead halide perovskite thin films by thermal annealing , 2014 .

[24]  Jinsong Huang,et al.  Solvent Annealing of Perovskite‐Induced Crystal Growth for Photovoltaic‐Device Efficiency Enhancement , 2014, Advanced materials.

[25]  Yang Yang,et al.  Interface engineering of highly efficient perovskite solar cells , 2014, Science.

[26]  Henk J. Bolink,et al.  Perovskite solar cells employing organic charge-transport layers , 2013, Nature Photonics.

[27]  Liming Ding,et al.  An 80.11% FF record achieved for perovskite solar cells by using the NH4Cl additive. , 2014, Nanoscale.

[28]  Qingfeng Dong,et al.  Efficient, high yield perovskite photovoltaic devices grown by interdiffusion of solution-processed precursor stacking layers , 2014 .

[29]  Timothy L. Kelly,et al.  Perovskite solar cells with a planar heterojunction structure prepared using room-temperature solution processing techniques , 2013, Nature Photonics.

[30]  Yang Yang,et al.  Moisture assisted perovskite film growth for high performance solar cells , 2014 .

[31]  Chun-Guey Wu,et al.  Planar heterojunction perovskite/PC71BM solar cells with enhanced open-circuit voltage via a (2/1)-step spin-coating process , 2014 .

[32]  Yun-Chorng Chang,et al.  Nickel Oxide Electrode Interlayer in CH3NH3PbI3 Perovskite/PCBM Planar‐Heterojunction Hybrid Solar Cells , 2014, Advanced materials.

[33]  M. Grätzel,et al.  A hole-conductor–free, fully printable mesoscopic perovskite solar cell with high stability , 2014, Science.

[34]  Teng Zhang,et al.  High-performance hole-extraction layer of sol-gel-processed NiO nanocrystals for inverted planar perovskite solar cells. , 2014, Angewandte Chemie.

[35]  S. Hsiao,et al.  Efficient and Uniform Planar‐Type Perovskite Solar Cells by Simple Sequential Vacuum Deposition , 2014, Advanced materials.

[36]  Chang-Lyoul Lee,et al.  Highly efficient and stable planar perovskite solar cells with reduced graphene oxide nanosheets as electrode interlayer , 2015 .

[37]  Paul L. Burn,et al.  Electro-optics of perovskite solar cells , 2014, Nature Photonics.

[38]  Young Chan Kim,et al.  Compositional engineering of perovskite materials for high-performance solar cells , 2015, Nature.

[39]  Sergei Tretiak,et al.  High-efficiency solution-processed perovskite solar cells with millimeter-scale grains , 2015, Science.

[40]  Namchul Cho,et al.  High‐Performance and Environmentally Stable Planar Heterojunction Perovskite Solar Cells Based on a Solution‐Processed Copper‐Doped Nickel Oxide Hole‐Transporting Layer , 2015, Advanced materials.

[41]  Dimitrios Raptis,et al.  Study of perovskite solar cells synthesized under ambient conditions and of the performance of small cell modules , 2015 .

[42]  Furkan H. Isikgor,et al.  Efficiency enhancement of planar perovskite solar cells by adding zwitterion/LiF double interlayers for electron collection. , 2015, Nanoscale.

[43]  Jiang Tang,et al.  PbS colloidal quantum dots as an effective hole transporter for planar heterojunction perovskite solar cells , 2015 .