Introduction to diffusion tensor imaging mathematics: Part III. Tensor calculation, noise, simulations, and optimization

The mathematical aspects of diffusion tensor magnetic resonance imaging (DTMRI, or DTI), the measurement of the diffusion tensor by magnetic resonance imaging (MRI), are discussed in this three-part series. Part III begins with a comparison of different ways to calculate the tensor from diffusion-weighted imaging data. Next, the effects of noise on signal intensities and diffusion tensor measurements are discussed. In MRI signal intensities as well as DTI parameters, noise can introduce a bias (systematic deviation) as well as scatter (random deviation) in the data. Propagation-of-error formulas are explained with examples. Step-by-step procedures for simulating diffusion tensor measurements are presented. Finally, methods for selecting the optimal b factor and number of b = 0 images for measuring several properties of the diffusion tensor, including the trace (or mean diffusivity) and anisotropy, are presented. © 2006 Wiley Periodicals, Inc. Concepts Magn Reson Part A 28A: 155–179, 2006

[1]  P. Basser,et al.  Estimation of the effective self-diffusion tensor from the NMR spin echo. , 1994, Journal of magnetic resonance. Series B.

[2]  C. Beaulieu,et al.  The basis of anisotropic water diffusion in the nervous system – a technical review , 2002, NMR in biomedicine.

[3]  Aaron J. Miller,et al.  The use of power images to perform quantitative analysis on low SNR MR images. , 1993, Magnetic resonance imaging.

[4]  Jonathan A. Jones,et al.  Optimal Sampling Strategies for the Measurement of Spin–Spin Relaxation Times , 1996 .

[5]  M. Moseley,et al.  In vivo MR tractography using diffusion imaging. , 2003, European journal of radiology.

[6]  T. A. Carpenter,et al.  Optimised diffusion-weighting for measurement of apparent diffusion coefficient (ADC) in human brain. , 1997, Magnetic resonance imaging.

[7]  Derek K. Jones,et al.  “Squashing peanuts and smashing pumpkins”: How noise distorts diffusion‐weighted MR data , 2004, Magnetic resonance in medicine.

[8]  R Mark Henkelman,et al.  Orientational diffusion reflects fiber structure within a voxel , 2002, Magnetic resonance in medicine.

[9]  D. Tuch Q‐ball imaging , 2004, Magnetic resonance in medicine.

[10]  J Sijbers,et al.  Mathematical framework for simulating diffusion tensor MR neural fiber bundles , 2005, Magnetic resonance in medicine.

[11]  Jong Hoon Lee,et al.  Axial asymmetry of water diffusion in brain white matter , 2005, Magnetic resonance in medicine.

[12]  L. Hall,et al.  Optimization of diffusion measurements using Cramer‐Rao lower bound theory and its application to articular cartilage , 2003, Magnetic resonance in medicine.

[13]  N. Papadakis,et al.  The reduction of the sorting bias in the eigenvalues of the diffusion tensor. , 1999, Magnetic resonance imaging.

[14]  M. Horsfield,et al.  Optimal strategies for measuring diffusion in anisotropic systems by magnetic resonance imaging , 1999, Magnetic resonance in medicine.

[15]  L. Frank Anisotropy in high angular resolution diffusion‐weighted MRI , 2001, Magnetic resonance in medicine.

[16]  Gareth J. Barker,et al.  Optimal imaging parameters for fiber-orientation estimation in diffusion MRI , 2005, NeuroImage.

[17]  P. Basser,et al.  Analytic Expressions for the Uncertainty of DTI-derived Parameters and their Validation Using Monte Carlo Methods , 2005 .

[18]  P. Basser,et al.  Parametric and non-parametric statistical analysis of DT-MRI data. , 2003, Journal of magnetic resonance.

[19]  O. Abe,et al.  MR diffusion tensor imaging: recent advance and new techniques for diffusion tensor visualization. , 2003, European journal of radiology.

[20]  T E Conturo,et al.  Diffusion tensor fiber tracking of human brain connectivity: aquisition methods, reliability analysis and biological results , 2002, NMR in biomedicine.

[21]  D. Le Bihan,et al.  Water diffusion compartmentation and anisotropy at high b values in the human brain , 2000, Magnetic resonance in medicine.

[22]  Y. Cohen,et al.  High b‐value q‐space analyzed diffusion‐weighted MRS and MRI in neuronal tissues – a technical review , 2002, NMR in biomedicine.

[23]  A. Alexander,et al.  Does fractional anisotropy have better noise immunity characteristics than relative anisotropy in diffusion tensor MRI? An analytical approach , 2004, Magnetic resonance in medicine.

[24]  W. Edelstein,et al.  A signal-to-noise calibration procedure for NMR imaging systems. , 1984, Medical physics.

[25]  S. Heiland,et al.  Noise correction for the exact determination of apparent diffusion coefficients at low SNR , 2001, Magnetic resonance in medicine.

[26]  L. Frank Characterization of anisotropy in high angular resolution diffusion‐weighted MRI , 2002, Magnetic resonance in medicine.

[27]  S. Maier,et al.  Normal brain and brain tumor: multicomponent apparent diffusion coefficient line scan imaging. , 2001, Radiology.

[28]  M. Bastin,et al.  A theoretical study of the effect of experimental noise on the measurement of anisotropy in diffusion imaging. , 1998, Magnetic resonance imaging.

[29]  D L Parker,et al.  Comparison of gradient encoding schemes for diffusion‐tensor MRI , 2001, Journal of magnetic resonance imaging : JMRI.

[30]  Peter B Kingsley,et al.  Contrast‐to‐noise ratios of diffusion anisotropy indices , 2005, Magnetic resonance in medicine.

[31]  N. Papadakis,et al.  Minimal gradient encoding for robust estimation of diffusion anisotropy. , 2000, Magnetic resonance imaging.

[32]  M. Kraut,et al.  Diffusion tensor MR imaging of the brain and white matter tractography. , 2002, AJR. American journal of roentgenology.

[33]  D. Norris,et al.  Biexponential diffusion attenuation in various states of brain tissue: Implications for diffusion‐weighted imaging , 1996, Magnetic resonance in medicine.

[34]  Derek K. Jones,et al.  The effect of gradient sampling schemes on measures derived from diffusion tensor MRI: A Monte Carlo study † , 2004, Magnetic resonance in medicine.

[35]  H. Gu,et al.  Circular spectrum mapping for intravoxel fiber structures based on high angular resolution apparent diffusion coefficients , 2003, Magnetic resonance in medicine.

[36]  P. Basser,et al.  New modeling and experimental framework to characterize hindered and restricted water diffusion in brain white matter , 2004, Magnetic resonance in medicine.

[37]  Z. Berente,et al.  The existence of biexponential signal decay in magnetic resonance diffusion‐weighted imaging appears to be independent of compartmentalization , 2004, Magnetic resonance in medicine.

[38]  P. Basser,et al.  Diffusion tensor MR imaging of the human brain. , 1996, Radiology.

[39]  S. Arridge,et al.  Detection and modeling of non‐Gaussian apparent diffusion coefficient profiles in human brain data , 2002, Magnetic resonance in medicine.

[40]  P. R. Bevington,et al.  Data Reduction and Error Analysis for the Physical Sciences , 1969 .

[41]  C. Westin,et al.  Multi‐component apparent diffusion coefficients in human brain † , 1999, NMR in biomedicine.

[42]  P. Basser CHAPTER 31 ■ DIFFUSION AND DIFFUSION TENSOR MR IMAGING: , 2008 .

[43]  K. Zou,et al.  Multi‐component apparent diffusion coefficients in human brain: Relationship to spin‐lattice relaxation , 2000, Magnetic resonance in medicine.

[44]  F. Vergeldt,et al.  Evaluation of algorithms for analysis of NMR relaxation decay curves. , 2000, Magnetic resonance imaging.

[45]  B. Vemuri,et al.  Generalized scalar measures for diffusion MRI using trace, variance, and entropy , 2005, Magnetic resonance in medicine.

[46]  P. Kingsley,et al.  Selection of the optimum b factor for diffusion‐weighted magnetic resonance imaging assessment of ischemic stroke , 2004, Magnetic resonance in medicine.

[47]  C. Westin,et al.  Magnetic Resonance in Medicine 51:321–330 (2004) Biexponential Diffusion Tensor Analysis of Human Brain Diffusion Data , 2022 .

[48]  P. Basser,et al.  Statistical artifacts in diffusion tensor MRI (DT‐MRI) caused by background noise , 2000, Magnetic resonance in medicine.

[49]  M E Bastin,et al.  Selecting an appropriate anisotropy index for displaying diffusion tensor imaging data with improved contrast and sensitivity , 2000, Magnetic resonance in medicine.

[50]  R. Dougherty,et al.  Cross‐subject comparison of principal diffusion direction maps , 2005, Magnetic resonance in medicine.

[51]  W. Perman,et al.  Improved detectability in low signal-to-noise ratio magnetic resonance images by means of a phase-corrected real reconstruction. , 1989, Medical physics.

[52]  Khader M Hasan,et al.  Computation of the fractional anisotropy and mean diffusivity maps without tensor decoding and diagonalization: Theoretical analysis and validation , 2003, Magnetic resonance in medicine.

[53]  Susumu Mori,et al.  Fiber tracking: principles and strategies – a technical review , 2002, NMR in biomedicine.

[54]  J. Boire,et al.  T2 maximum likelihood estimation from multiple spin‐echo magnitude images , 1996, Magnetic resonance in medicine.

[55]  P. Basser,et al.  Toward a quantitative assessment of diffusion anisotropy , 1996, Magnetic resonance in medicine.

[56]  D. Le Bihan,et al.  A framework based on spin glass models for the inference of anatomical connectivity from diffusion‐weighted MR data – a technical review , 2002, NMR in biomedicine.

[57]  P. Kingsley,et al.  Methods of measuring spin-lattice ( T 1 ) relaxation times: an annotated bibliography , 1999 .

[58]  Yihong Yang,et al.  Mapping the orientation of intravoxel crossing fibers based on the phase information of diffusion circular spectrum , 2004, NeuroImage.

[59]  H. Gudbjartsson,et al.  The rician distribution of noisy mri data , 1995, Magnetic resonance in medicine.

[60]  M E Bastin,et al.  Utilizing the diffusion‐to‐noise ratio to optimize magnetic resonance diffusion tensor acquisition strategies for improving measurements of diffusion anisotropy , 2001, Magnetic resonance in medicine.

[61]  S. Wakana,et al.  MRI Atlas of Human White Matter , 2005 .

[62]  A. Connelly,et al.  Anisotropic noise propagation in diffusion tensor MRI sampling schemes , 2003, Magnetic resonance in medicine.

[63]  R V Mulkern,et al.  Biexponential apparent diffusion coefficient parametrization in adult vs newborn brain. , 2001, Magnetic resonance imaging.

[64]  Derek K. Jones,et al.  RESTORE: Robust estimation of tensors by outlier rejection , 2005, Magnetic resonance in medicine.

[65]  M. Smith,et al.  An unbiased signal-to-noise ratio measure for magnetic resonance images. , 1993, Medical physics.

[66]  S. Rice Mathematical analysis of random noise , 1944 .

[67]  Paul T. Callaghan,et al.  Spatial coherence phenomena arising from translational spin motion in gradient spin echo experiments , 1999 .

[68]  V. Wedeen,et al.  Diffusion MRI of Complex Neural Architecture , 2003, Neuron.

[69]  A. Anderson Theoretical analysis of the effects of noise on diffusion tensor imaging , 2001, Magnetic resonance in medicine.

[70]  T. Mareci,et al.  Generalized diffusion tensor imaging and analytical relationships between diffusion tensor imaging and high angular resolution diffusion imaging , 2003, Magnetic resonance in medicine.

[71]  Xiaohong Joe Zhou,et al.  Analytical error propagation in diffusion anisotropy calculations , 2004, Journal of magnetic resonance imaging : JMRI.

[72]  William H. Press,et al.  Numerical recipes in C , 2002 .

[73]  R. Henkelman Measurement of signal intensities in the presence of noise in MR images. , 1985, Medical physics.

[74]  P. Basser Relationships between diffusion tensor and q‐space MRI † , 2002, Magnetic resonance in medicine.