Reductions for Monotone Boolean Circuits

The large class, say NLOG, of Boolean functions, including 0-1 Sort and 0-1 Merge, have an upper bound of O(nlogn) for their monotone circuit size, i.e., have circuits with O(nlogn) AND/OR gates of fan-in two. Suppose that we can use, besides such normal AND/OR gates, any number of more powerful “F-gates” which realize a monotone Boolean function F with r (≥2) inputs and r′ (≥1) outputs. Note that the cost of each AND/OR gate is one and we assume that the cost of each F-gate is r. Now we define: A Boolean function f in NLOG is said to be F-Easy if f can be constructed by a circuit with AND/OR/F gates whose total cost is o(nlogn). In this paper we show that 0-1 Merge is not F-Easy for an arbitrary monotone function F such that r′ ≤r/logr.

[1]  Leslie G. Valiant,et al.  Shifting Graphs and Their Applications , 1976, J. ACM.

[2]  田中 圭介,et al.  Lower bounds on the negation-limited circuit complexity , 1997 .

[3]  Uri Zwick A 4n Lower Bound on the Combinational Complexity of Certain Symmetric Boolean Functions over the Basis of Unate Dyadic Boolean Functions , 1991, SIAM J. Comput..

[4]  Ingo Wegener,et al.  The complexity of Boolean functions , 1987 .

[5]  A. Yavuz Oruç A Study of Permutation Networks: New Designs and Some Generalizations , 1994, J. Parallel Distributed Comput..

[6]  Ingo Wegener,et al.  The Complexity of Symmetric Boolean Functions , 1987, Computation Theory and Logic.

[7]  Tetsuro Nishino,et al.  Negation-Limited Circuit Complexity of Symmetric Functions , 1996, Inf. Process. Lett..

[8]  Claus-Peter Schnorr Zwei lineare untere Schranken für die Komplexität Boolescher Funktionen , 2005, Computing.

[9]  Edmund A. Lamagna,et al.  The Complexity of Monotone Networks for Certain Bilinear Forms, Routing Problems, Sorting, and Merging , 1979, IEEE Transactions on Computers.

[10]  Tetsuro Nishino,et al.  On the Complexity of Negation-Limited Boolean Networks , 1998, SIAM J. Comput..

[11]  Leslie G. Valiant,et al.  Short Monotone Formulae for the Majority Function , 1984, J. Algorithms.

[12]  Ran Raz,et al.  Explicit lower bound of 4.5n - o(n) for boolena circuits , 2001, STOC '01.

[13]  János Komlós,et al.  An 0(n log n) sorting network , 1983, STOC.

[14]  Shao Chin Sung,et al.  An exponential gap with the removal of one negation gate , 2002, Inf. Process. Lett..

[15]  Jun Tarui,et al.  On the negation-limited circuit complexity of merging , 2003, Discret. Appl. Math..

[16]  Ran Raz,et al.  Higher lower bounds on monotone size , 2000, STOC '00.

[17]  Akira Maruoka,et al.  A Superpolynomial Lower Bound for a Circuit Computing the Clique Function with at most (1/6)log log n Negation Gates , 2005, SIAM J. Comput..

[18]  E. A. Lamagna,et al.  Combinational Complexity of Some Monotone Functions , 1974, SWAT.

[19]  Kazuo Iwama,et al.  An Explicit Lower Bound of 5n - o(n) for Boolean Circuits , 2002, MFCS.