Polypyrrole-bismuth selenide (PPY-Bi2Se3) composite-thermoelectric characterization and effect of nickel doping

[1]  A. Abusorrah,et al.  Polypyrrole sheets composed of nanoparticles as a promising room temperature thermo-electric material , 2021 .

[2]  M. H. Abdel-Aziz,et al.  Optimization preparation of one-dimensional polypyrrole nanotubes for enhanced thermoelectric performance , 2021, Polymer.

[3]  M. Bassyouni,et al.  One-Dimensional Nanocomposites Based on Polypyrrole-Carbon Nanotubes and Their Thermoelectric Performance , 2021, Polymers.

[4]  A. Arsad,et al.  Synthesis and factor affecting on the conductivity of polypyrrole: a short review , 2020, Polymers for Advanced Technologies.

[5]  B. Saha,et al.  Low Interfacial Energy Barrier and Improved Thermoelectric Performance in Te-Incorporated Polypyrrole , 2020, The Journal of Physical Chemistry C.

[6]  Meng Li,et al.  Electrochemical doping tuning of flexible polypyrrole film with enhanced thermoelectric performance , 2020 .

[7]  Shuang Dong,et al.  Polymeric Thermoelectric Composites by Polypyrrole and Cheap Reduced Graphene Oxide in Towel-Gourd Sponge Fibers , 2020, ACS omega.

[8]  Y. Kuo,et al.  Reduction in thermal conductivity and electrical resistivity of indium and tellurium co-doped bismuth selenide thermoelectric system , 2020, Journal of Materials Science: Materials in Electronics.

[9]  D. Satapathy,et al.  Bi2Se3-PVDF composite: A flexible thermoelectric system , 2020 .

[10]  A. Jain,et al.  Implementation of Bismuth Chalcogenides as an Efficient Anode: A Journey from Conventional Liquid Electrolyte to an All-Solid-State Li-Ion Battery , 2020, Molecules.

[11]  Y. Kuo,et al.  Enhanced thermoelectric performance of a novel reaction condition-induced Bi2S3-Bi nanocomposites. , 2020, ACS applied materials & interfaces.

[12]  B. Saha,et al.  Improved Thermoelectric Performance in TiO2 Incorporated Polyaniline: A Polymer-Based Hybrid Material for Thermoelectric Generators , 2020, Journal of Electronic Materials.

[13]  Xiaohong Yin,et al.  DFT study on Ag loaded 2H-MoS2 for understanding the mechanism of improved photocatalytic reduction of CO2. , 2020, Physical chemistry chemical physics : PCCP.

[14]  P. Papet,et al.  Enhanced thermoelectric properties in Polypyrrole composites with silicide fillers , 2020, Materials Letters.

[15]  D. Banerjee,et al.  Visible-light active electrochemically deposited tin selenide thin films: synthesis, characterization and photocatalytic activity , 2020, Journal of Materials Science: Materials in Electronics.

[16]  Mónica P. A. Ferreira,et al.  The versatile biomedical applications of bismuth-based nanoparticles and composites: therapeutic, diagnostic, biosensing, and regenerative properties. , 2020, Chemical Society reviews.

[17]  M. Harb,et al.  Predicting the Most Suitable Surface Candidates of Ta3N5 Photocatalysts for Water-Splitting Reactions Using Screened Coulomb Hybrid DFT Computations , 2020 .

[18]  B. Saha,et al.  Effect of NiO incorporation in charge transport of polyaniline: Improved polymer based thermoelectric generator , 2019, Energy.

[19]  Y. Qiu,et al.  Highly enhanced thermoelectric properties of nanostructured Bi2S3 bulk materials via carrier modification and multi-scale phonon scattering , 2019, Inorganic Chemistry Frontiers.

[20]  K. W. Shah,et al.  One-Dimensional Nanostructure Engineering of Conducting Polymers for Thermoelectric Applications , 2019, Applied Sciences.

[21]  C. Spataru,et al.  Bulk-free topological insulator Bi2Se3 nanoribbons with magnetotransport signatures of Dirac surface states. , 2018, Nanoscale.

[22]  Cham Kim,et al.  Interfacial energy band and phonon scattering effect in Bi2Te3-polypyrrole hybrid thermoelectric material , 2018, Applied Physics Letters.

[23]  Yong Du,et al.  Morphologies Tuning of Polypyrrole and Thermoelectric Properties of Polypyrrole Nanowire/Graphene Composites , 2018, Polymers.

[24]  D. Banerjee,et al.  Composite of polyaniline-bismuth selenide with enhanced thermoelectric performance , 2018, Journal of Applied Polymer Science.

[25]  L. Beneš,et al.  Thermoelectric and magnetic properties of Cr-doped single crystal Bi 2 Se 3 – Search for energy filtering , 2018 .

[26]  D. Banerjee,et al.  Enhanced thermoelectric performance of n-type bismuth selenide doped with nickel , 2017 .

[27]  Yong Du,et al.  Flexible Thermoelectric Composite Films of Polypyrrole Nanotubes Coated Paper , 2017 .

[28]  F. Opoku,et al.  Charge transport, interfacial interactions and synergistic mechanisms in BiNbO4/MWO4 (M = Zn and Cd) heterostructures for hydrogen production: insights from a DFT+U study. , 2017, Physical chemistry chemical physics : PCCP.

[29]  R. Bhajantri,et al.  Synthesis and dielectric investigations of bismuth sulfide particles filled PVA: Polypyrrole core-shell nanocomposites , 2017 .

[30]  R. Choudhary,et al.  Robust electron transport properties of PANI/PPY/ZnO polymeric nanocomposites for OLED applications , 2017 .

[31]  Yuanhua Lin,et al.  Enhanced Thermoelectric Performance of Te-Doped Bi2Se3−xTex Bulks by Self-Propagating High-Temperature Synthesis , 2017 .

[32]  Ashutosh Kumar Singh,et al.  Nanostructured polypyrrole: enhancement in thermoelectric figure of merit through suppression of thermal conductivity , 2017 .

[33]  D. Hui,et al.  Polymer composites-based thermoelectric materials and devices , 2017 .

[34]  D. K. Aswal,et al.  Tellurium-free thermoelectrics: Improved thermoelectric performance of n-type Bi2Se3 having multiscale hierarchical architecture , 2017 .

[35]  Jie Yang,et al.  Polypyrrole/Graphene/Polyaniline Ternary Nanocomposite with High Thermoelectric Power Factor. , 2017, ACS applied materials & interfaces.

[36]  J. Ni,et al.  Bio-inspired engineering of Bi2S3-PPy yolk-shell composite for highly durable lithium and sodium storage , 2017 .

[37]  Guangming Chen,et al.  Polypyrrole nanostructures and their thermoelectric performance , 2017 .

[38]  P. Qin,et al.  Highly Enhanced Thermoelectric Properties of Bi/Bi2S3 Nanocomposites. , 2017, ACS applied materials & interfaces.

[39]  Weihua Zhu,et al.  Novel Bi2O2CO3/polypyrrole/g-C3N4 nanocomposites with efficient photocatalytic and nonlinear optical properties , 2017 .

[40]  D. Banerjee,et al.  Remarkable photo-catalytic degradation of malachite green by nickel doped bismuth selenide under visible light irradiation , 2017 .

[41]  Guangming Chen,et al.  Enhanced thermoelectric performance by self-assembled layered morphology of polypyrrole nanowire/single-walled carbon nanotube composites , 2016 .

[42]  M. Radny,et al.  Topological electronic states of bismuth selenide thin films upon structural surface defects , 2016 .

[43]  F. Besenbacher,et al.  Multifunctional Bismuth Selenide Nanocomposites for Antitumor Thermo-Chemotherapy and Imaging. , 2016, ACS Nano.

[44]  T. D. Senguttuvan,et al.  High performance broadband photodetector using fabricated nanowires of bismuth selenide , 2016, Scientific Reports.

[45]  Jianjun Liu Origin of High Photocatalytic Efficiency in Monolayer g‑C3N4/CdS Heterostructure: A Hybrid DFT Study , 2015 .

[46]  Wei Zhou,et al.  Flexible n-type thermoelectric films based on Cu-doped Bi2Se3 nanoplate and Polyvinylidene Fluoride composite with decoupled Seebeck coefficient and electrical conductivity , 2015 .

[47]  Di Li,et al.  Enhanced thermoelectric performance of n-type Bi2Se3 doped with Cu , 2015 .

[48]  Y. Choa,et al.  Thermochemical hydrogen sensor based on chalcogenide nanowire arrays , 2015, Nanotechnology.

[49]  Jingchao Zhou,et al.  Enhanced thermoelectric performance of Bi2S3 by synergistical action of bromine substitution and copper nanoparticles , 2015 .

[50]  D. Carroll,et al.  Layered Bi2Se3 nanoplate/polyvinylidene fluoride composite based n-type thermoelectric fabrics. , 2015, ACS applied materials & interfaces.

[51]  C. S. Chen,et al.  The effect of temperature on Bi2Se3 nanostructures synthesized via chemical vapor deposition , 2015, Journal of Materials Science: Materials in Electronics.

[52]  M. Fuhrer,et al.  Ambipolar surface state thermoelectric power of topological insulator Bi2Se3. , 2015, Nano letters.

[53]  M. Fuchiwaki,et al.  Polypyrrole Asymmetric Bilayer Artificial Muscle: Driven Reactions, Cooperative Actuation, and Osmotic Effects , 2015 .

[54]  Lili Jiang,et al.  Flexible, Free-Standing TiO2–Graphene–Polypyrrole Composite Films as Electrodes for Supercapacitors , 2015 .

[55]  S. K. Srivastava,et al.  Trapping of microwave radiation in hollow polypyrrole microsphere through enhanced internal reflection: A novel approach , 2015, Scientific Reports.

[56]  Qichun Zhang,et al.  Polypyrrole nanotube film for flexible thermoelectric application , 2014 .

[57]  W. Xu,et al.  Organic Thermoelectric Materials: Emerging Green Energy Materials Converting Heat to Electricity Directly and Efficiently , 2014, Advanced materials.

[58]  Fangzhuan Liu,et al.  Preparation of polypyrrole/graphene nanosheets composites with enhanced thermoelectric properties , 2014 .

[59]  K. Cai,et al.  Preparation and thermoelectric properties of multi-walled carbon nanotubes/polypyrrole composites , 2014 .

[60]  D. Banerjee,et al.  Thermoelectric performance of electrodeposited nanostructured polyaniline doped with sulfo-salicylic acid , 2014 .

[61]  M. Martín-González,et al.  Thermoelectric composites of poly(3-hexylthiophene) and carbon nanotubes with a large power factor , 2013 .

[62]  Nguyen Duc Thien,et al.  Synergistic Effects in the Gas Sensitivity of Polypyrrole/Single Wall Carbon Nanotube Composites , 2012, Sensors.

[63]  V. Pavlínek,et al.  SYNTHESIS OF TITANATE/POLYPYRROLE COMPOSITE ROD-LIKE PARTICLES AND THE ROLE OF CONDUCTING POLYMER ON ELECTRORHEOLOGICAL EFFICIENCY , 2012 .

[64]  A. El‐Shazly,et al.  Using Polypyrrole Coating for Improving the Corrosion Resistance of Steel Buried in Corrosive Mediums , 2012, International Journal of Electrochemical Science.

[65]  X. Crispin,et al.  Optimization of the thermoelectric figure of merit in the conducting polymer poly(3,4-ethylenedioxythiophene). , 2011, Nature materials.

[66]  J. Huang,et al.  Synthesis and Thermoelectric Properties of Bi2Se3 Nanostructures , 2010, Nanoscale research letters.

[67]  Lu Baoyang,et al.  Thermoelectric Performances of Free-Standing Polythiophene and Poly(3-Methylthiophene) Nanofilms , 2010 .

[68]  A. Majumdar,et al.  Universal and Solution-Processable Precursor to Bismuth Chalcogenide Thermoelectrics , 2010 .

[69]  M Vijayan,et al.  Biosensing and drug delivery by polypyrrole. , 2006, Analytica chimica acta.

[70]  A. MacDiarmid,et al.  "Synthetic Metals": A Novel Role for Organic Polymers (Nobel Lecture). , 2001, Angewandte Chemie.

[71]  N. T. Kemp,et al.  Thermoelectric power and conductivity of different types of polypyrrole , 1999 .

[72]  H. Kaneko,et al.  Magnetoresistance and thermoelectric power studies of metal-nonmetal transition in iodine-doped polyacetylene , 1993 .

[73]  D. A. Wright Thermoelectric Properties of Bismuth Telluride and its Alloys , 1958, Nature.

[74]  B. Saha,et al.  Camphor sulfonic acid incorporation on SnO2/polyaniline nanocomposites for improved thermoelectric energy conversion , 2022, Sustainable Energy & Fuels.

[75]  S. N. Leung,et al.  Processing parameters to enhance the electrical conductivity and thermoelectric power factor of polypyrrole/multi-walled carbon nanotubes nanocomposites , 2019, Synthetic Metals.

[76]  D. Banerjee,et al.  Thermoelectric Performance of Polypyrrole and Single Walled Carbon Nanotube Composite , 2018 .

[77]  Tong Lin,et al.  Single-walled Carbon Nanotube / Polypyrrole Thermoelectric Composite Materials , 2018 .

[78]  V. Nagarajan,et al.  Exploring the Structural Stability and Electronic Properties of VS2 Nanostructures – a DFT Study , 2017 .

[79]  Alan G. MacDiarmid,et al.  In-situ deposited thin films of polypyrrole: conformational changes induced by variation of dopant and substrate surface , 1997 .