Hyperspectral data modelling by nonGaussian statistical distributions
暂无分享,去创建一个
[1] Marco Diani,et al. An unsupervised algorithm for hyperspectral image segmentation based on the Gaussian mixture model , 2003, IGARSS 2003. 2003 IEEE International Geoscience and Remote Sensing Symposium. Proceedings (IEEE Cat. No.03CH37477).
[2] A. Öztürk,et al. Non-Gaussian random vector identification using spherically invariant random processes , 1993 .
[3] Dimitris G. Manolakis,et al. Detection algorithms for hyperspectral imaging applications , 2002, IEEE Signal Process. Mag..
[4] John P. Kerekes,et al. Statistics of hyperspectral imaging data , 2001, SPIE Defense + Commercial Sensing.
[5] E. M. Winter,et al. Anomaly detection from hyperspectral imagery , 2002, IEEE Signal Process. Mag..
[6] T. Moon. The expectation-maximization algorithm , 1996, IEEE Signal Process. Mag..
[7] S. G. Beaven,et al. Comparison of Gaussian mixture and linear mixture models for classification of hyperspectral data , 2000, IGARSS 2000. IEEE 2000 International Geoscience and Remote Sensing Symposium. Taking the Pulse of the Planet: The Role of Remote Sensing in Managing the Environment. Proceedings (Cat. No.00CH37120).
[8] David A. Landgrebe,et al. Signal Theory Methods in Multispectral Remote Sensing , 2003 .
[9] Dimitris Manolakis,et al. Non Gaussian models for hyperspectral algorithm design and assessment , 2002, IEEE International Geoscience and Remote Sensing Symposium.