An efficient quantum secret sharing scheme with Einstein–Podolsky–Rosen pairs

[1]  Jian-Wei Pan,et al.  Efficient multiparty quantum-secret-sharing schemes , 2004, quant-ph/0405179.

[2]  Fuguo Deng,et al.  Two-step quantum direct communication protocol using the Einstein-Podolsky-Rosen pair block , 2003, quant-ph/0308173.

[3]  G. Long,et al.  Controlled order rearrangement encryption for quantum key distribution , 2003, quant-ph/0308172.

[4]  M. Żukowski,et al.  Unified criterion for security of secret sharing in terms of violation of Bell inequalities , 2003, quant-ph/0302156.

[5]  B. Sanders,et al.  Efficient sharing of a continuous-variable quantum secret , 2003, quant-ph/0301028.

[6]  W. Bowen,et al.  Continuous variable (2, 3) threshold quantum secret sharing schemes , 2002, quant-ph/0210188.

[7]  V. Karimipour,et al.  Quantum secret sharing based on reusable GHZ states as secure carriers , 2002, quant-ph/0204124.

[8]  Hoi-Kwong Lo,et al.  Proof of security of quantum key distribution with two-way classical communications , 2001, IEEE Trans. Inf. Theory.

[9]  G. Guo,et al.  Quantum secret sharing without entanglement , 2002, quant-ph/0212056.

[10]  V. Karimipour,et al.  Entanglement swapping of generalized cat states and secret sharing , 2001, quant-ph/0112050.

[11]  B. Sanders,et al.  How to share a continuous-variable quantum secret by optical interferometry , 2001, quant-ph/0107074.

[12]  Edo Waks,et al.  Security of quantum key distribution with entangled photons against individual attacks , 2000, quant-ph/0012078.

[13]  G. Long,et al.  Theoretically efficient high-capacity quantum-key-distribution scheme , 2000, quant-ph/0012056.

[14]  Hideki Imai,et al.  Improving quantum secret-sharing schemes , 2001 .

[15]  Chui-Ping Yang,et al.  Teleportation of rotations and receiver-encoded secret sharing , 2001, quant-ph/0107100.

[16]  V. Vedral,et al.  Security of EPR-based quantum cryptography against incoherent symmetric attacks , 2001, quant-ph/0103058.

[17]  N. Gisin,et al.  Experimental demonstration of quantum secret sharing , 2001 .

[18]  N Gisin,et al.  Quantum communication between N partners and Bell's inequalities. , 2001, Physical review letters.

[19]  Shor,et al.  Simple proof of security of the BB84 quantum key distribution protocol , 2000, Physical review letters.

[20]  S. Bandyopadhyay,et al.  Teleportation and secret sharing with pure entangled states , 2000, quant-ph/0002032.

[21]  D. Gottesman Theory of quantum secret sharing , 1999, quant-ph/9910067.

[22]  R. Cleve,et al.  HOW TO SHARE A QUANTUM SECRET , 1999, quant-ph/9901025.

[23]  V. Buzek,et al.  Quantum secret sharing , 1998, quant-ph/9806063.

[24]  H. Chau,et al.  Unconditional security of quantum key distribution over arbitrarily long distances , 1998, Science.

[25]  M. Koashi,et al.  Quantum entanglement for secret sharing and secret splitting , 1999 .

[26]  N. Gisin,et al.  OPTIMAL EAVESDROPPING IN QUANTUM CRYPTOGRAPHY. I. INFORMATION BOUND AND OPTIMAL STRATEGY , 1997 .

[27]  Jozef Gruska Foundations of Computing , 1997 .

[28]  H. Bechmann-Pasquinucci,et al.  Quantum cryptography , 2001, quant-ph/0101098.

[29]  Charles H. Bennett,et al.  Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states. , 1992, Physical review letters.

[30]  Charles H. Bennett,et al.  Quantum cryptography without Bell's theorem. , 1992, Physical review letters.

[31]  M. Kafatos Bell's theorem, quantum theory and conceptions of the universe , 1989 .

[32]  W. Wootters,et al.  A single quantum cannot be cloned , 1982, Nature.

[33]  Adi Shamir,et al.  How to share a secret , 1979, CACM.