Hamilton-Jacobi-Bellman Equation and Feedback Synthesis for Impulsive Control

There is an increasing number of applications whose trajectories are better modeled by discontinuous or impulsive trajectories. Thus, we explore optimality conditions for impulsive control system expressed in terms of an Hamilton-Jacobi-Bellman equation. We use a measure driven differential inclusion to model the impulsive behavior since it provides a formal framework in which the control space is complete. Additionally, we use the impulsive Euler solution and invariance results to derive feedback optimal control synthesis.

[1]  Raymond W. Rishel,et al.  An Extended Pontryagin Principle for Control Systems whose Control Laws Contain Measures , 1965 .

[2]  B. Miller The generalized solutions of nonlinear optimization problems with impulse control , 1996 .

[3]  Geraldo Nunes Silva,et al.  Necessary conditions of optimality for vector-valued impulsive control problems , 2000 .

[4]  Stephen Taylor Introduction to Measure and Integration , 1973 .

[5]  J. Warga Optimal control of differential and functional equations , 1972 .

[6]  A. Bressan,et al.  Impulsive control systems without commutativity assumptions , 1994 .

[7]  F. Rampazzo,et al.  Dynamic Programming for Nonlinear Systems Driven by Ordinaryand Impulsive Controls , 1996 .

[8]  Yu. S. Ledyaev,et al.  Nonsmooth analysis and control theory , 1998 .

[9]  E. Barron,et al.  Optimal control and differential games with measures , 1993 .

[10]  Boris M. Miller,et al.  Impulsive Control in Continuous and Discrete-Continuous Systems , 2003 .

[11]  R. Vinter,et al.  A maximum principle for optimal processes with discontinuous trajectories , 1988 .

[12]  Sérgio Loureiro Fraga,et al.  IMPULSIVE FEEDBACK CONTROL: A CONSTRUCTIVE APPROACH , 2008 .

[13]  R. Vinter,et al.  Necessary conditions for optimal impulsive control problems , 1997, Proceedings of the 36th IEEE Conference on Decision and Control.

[14]  V. Borkar,et al.  A unified framework for hybrid control: model and optimal control theory , 1998, IEEE Trans. Autom. Control..

[15]  Wassim M. Haddad,et al.  Impulsive and Hybrid Dynamical Systems: Stability, Dissipativity, and Control , 2006 .

[16]  S. T. Zavalishchin,et al.  Dynamic Impulse Systems: Theory and Applications , 1997 .

[17]  Peter R. Wolenski,et al.  A Sampling Method and Approximation Results for Impulsive Systems , 2007, SIAM J. Control. Optim..

[18]  Geraldo Nunes Silva,et al.  Lyapounov stability of measure driven differential inclusions , 2002 .

[19]  W. Marsden I and J , 2012 .

[20]  A. N. Sesekin,et al.  Dynamic Impulse Systems , 1997 .

[21]  Geraldo Nunes Silva,et al.  Lyapunov Stability of Measure Driven Impulsive Systems , 2004 .

[22]  Sérgio Loureiro Fraga,et al.  An impulsive framework for the control of hybrid systems , 2007, 2007 46th IEEE Conference on Decision and Control.

[23]  G. D. Maso,et al.  On systems of ordinary differential equations with measures as controls , 1991, Differential and Integral Equations.

[24]  Fernando M. Lobo Pereira,et al.  A Nondegenerate Maximum Principle for the Impulse Control Problem with State Constraints , 2005, SIAM J. Control. Optim..

[25]  Sérgio Loureiro Fraga,et al.  On the feedback control of impulsive dynamic systems , 2008, 2008 47th IEEE Conference on Decision and Control.

[26]  Alberto Bressan,et al.  Impulsive control of Lagrangian systems and locomotion in fluids , 2007 .

[27]  Boris M. Miller,et al.  Dynamical Systems With Active Singularities of Elastic Type: A Modeling and Controller Synthesis Framework , 2007, IEEE Transactions on Automatic Control.

[28]  Geraldo Nunes Silva,et al.  Hamilton-Jacobi Conditions for an Impulsive Control Problem , 2001 .