A GENERAL FRAMEWORK FOR THE ANALYSIS OF METAMATERIAL TRANSMISSION LINES

This paper presents a closed-form analysis of composite right/left handed transmission lines. The ladder network structure of the transmission line allows to obtain a rational form of any two- port network representation. As a consequence of the rational form of the transfer functions, poles and residues are easily computed and the dominant ones selected leading to an e-cient time-domain macromodel. The numerical results conflrm the robustness and the accuracy of the proposed method in capturing the physics of composite right/left handed transmission lines.

[1]  R. Kaul,et al.  Microwave engineering , 1989, IEEE Potentials.

[2]  D. A. Frickey Conversions between S, Z, Y, H, ABCD, and T parameters which are valid for complex source and load impedances , 1994 .

[3]  G. Kraftmakher,et al.  A composite medium with simultaneously negative permittivity and permeability , 2003 .

[4]  G. Eleftheriades,et al.  A Generalized Negative-Refractive-Index Transmission-Line (NRI–TL) Metamaterial for Dual-Band and Quad-Band Applications , 2007, IEEE Microwave and Wireless Components Letters.

[5]  P. Hall,et al.  Orthogonally Polarised Dipole Antenna using Left Handed Transmission Lines , 2006, 2006 European Microwave Conference.

[6]  Albert E. Ruehli,et al.  The modified nodal approach to network analysis , 1975 .

[7]  Ronald A. Rohrer,et al.  Electronic Circuit and System Simulation Methods , 1994 .

[8]  Chi-Tsong Chen,et al.  Linear System Theory and Design , 1995 .

[9]  Willie J Padilla,et al.  Composite medium with simultaneously negative permeability and permittivity , 2000, Physical review letters.

[10]  I. Wolff,et al.  Double-Lorentz Transmission Line Metamaterial and its Application to Tri-Band Devices , 2007, 2007 IEEE/MTT-S International Microwave Symposium.

[11]  A.K. Skrivervik,et al.  Modeling of periodic distributed MEMS-application to the design of variable true-time delay lines , 2006, IEEE Transactions on Microwave Theory and Techniques.

[12]  V. Veselago The Electrodynamics of Substances with Simultaneously Negative Values of ∊ and μ , 1968 .

[13]  Teresa M. Martin-Guerrero,et al.  DERIVATION AND GENERAL PROPERTIES OF ARTIFICIAL LOSSLESS BALANCED COMPOSITE RIGHT/LEFT-HANDED TRANSMISSION LINES OF ARBITRARY ORDER , 2009 .

[14]  George V. Eleftheriades,et al.  A Generalized Negative-Refractive-Index Transmission-Line (NRI–TL) Metamaterial for Dual-Band and Quad-Band Applications , 2007 .

[15]  C. Caloz,et al.  Dual Composite Right/Left-Handed (D-CRLH) Transmission Line Metamaterial , 2006, IEEE Microwave and Wireless Components Letters.

[16]  A. Orlandi,et al.  Feature selective validation (FSV) for validation of computational electromagnetics (CEM). part I-the FSV method , 2006, IEEE Transactions on Electromagnetic Compatibility.

[17]  B. Spielman,et al.  A Stability Analysis for Time-Domain Method-of-Moments Analysis of 1-D Double-Negative Transmission Lines , 2007, IEEE Transactions on Microwave Theory and Techniques.

[18]  Giuseppe Ferri,et al.  The DFF and DFFz Triangles and Their Mathematical Properties , 1993 .

[19]  S. Otto,et al.  Extended composite right/left-handed (E-CRLH) metamaterial and its application as quadband quarter-wavelength transmission line , 2006, 2006 Asia-Pacific Microwave Conference.

[20]  Tatsuo Itoh,et al.  Electromagnetic metamaterials : transmission line theory and microwave applications : the engineering approach , 2005 .

[21]  K. Balmain,et al.  Negative Refraction Metamaterials: Fundamental Principles and Applications , 2005 .

[22]  G. Eleftheriades,et al.  Transmission line models for negative refractive index media and associated implementations without excess resonators , 2003, IEEE Microwave and Wireless Components Letters.

[23]  Sailing He Electromagnetic Metamaterials: Transmission Line Theory and Microwave Applications. By Christophe Caloz and Tatsuo Itoh. , 2007 .

[24]  Alejandro Álvarez Melcón,et al.  Investigation on the Phenomenology of Impulse-Regime Metamaterial Transmission Lines , 2009, IEEE Transactions on Antennas and Propagation.

[25]  David R. Smith,et al.  Loop-wire medium for investigating plasmons at microwave frequencies , 1999 .

[26]  T. Itoh,et al.  Transmission line approach of left-handed (LH) materials and microstrip implementation of an artificial LH transmission line , 2004, IEEE Transactions on Antennas and Propagation.

[27]  George V. Eleftheriades,et al.  Negative refraction, growing evanescent waves, and sub-diffraction imaging in loaded transmission-line metamaterials , 2003 .

[28]  R. Weigel,et al.  On the synthesis of equivalent circuit models for multiports characterized by frequency-dependent parameters , 2002, 2002 IEEE MTT-S International Microwave Symposium Digest (Cat. No.02CH37278).

[29]  T. Itoh,et al.  Characteristics of the composite right/left-handed transmission lines , 2004, IEEE Microwave and Wireless Components Letters.

[30]  T. Itoh,et al.  Super-compact multilayered left-handed transmission line and diplexer application , 2005, IEEE Transactions on Microwave Theory and Techniques.

[31]  Harold Shichman,et al.  Integration System of a Nonlinear Network- Analysis Program , 1970 .

[32]  N. Engheta,et al.  A positive future for double-negative metamaterials , 2005, IEEE Transactions on Microwave Theory and Techniques.

[33]  Giuseppe Ferri,et al.  A new fast method for ladder networks characterization , 1991 .

[34]  S. Liberty,et al.  Linear Systems , 2010, Scientific Parallel Computing.

[35]  T. Itoh,et al.  Composite right/left-handed transmission line metamaterials , 2004, IEEE Microwave Magazine.

[36]  G. Antonini,et al.  A new methodology for the transient analysis of lossy and dispersive multiconductor transmission lines , 2004, IEEE Transactions on Microwave Theory and Techniques.

[37]  G. Ferri,et al.  A new approach for closed-form transient analysis of multiconductor transmission lines , 2004, IEEE Transactions on Electromagnetic Compatibility.