In the friction stir welding (FSW) process, heat is generated by friction between the tool and the workpiece. This heat flows into the workpiece as well as the tool. The amount of heat conducted into the workpiece determines the quality of the weld, residual stress and distortion of the workpiece. The amount of the heat that flows to the tool dictates the life of the tool and the capability of the tool for the joining process. In this paper, we formulate the heat transfer of the FSW process into two boundary value problems (BVP)—a steady state BVP for the tool and a transient BVP for the workpiece. To quantify the physical values of the process the temperatures in the workpiece and the tool are measured during FSW. Using the measured transient temperature fields finite element numerical analyses were performed to determine the heat flux generated from the friction to the workpiece and the tool. Detailed temperature distributions in the workpiece and the tool are presented. Discussions relative to the FSW process are then given. In particular, the results show that (1) the majority of the heat generated from the friction, i.e., about 95%, is transferred into the workpiece and only 5% flows into the tool and (2) the fraction of the rate of plastic work dissipated as heat is about 80%.@DOI: 10.1115/1.1537741#
[1]
D. Macdougall,et al.
Determination of the plastic work converted to heat using radiometry
,
2000
.
[2]
Xinhai Qi,et al.
Thermal and Thermo-Mechanical Modeling of Friction Stir Welding of Aluminum Alloy 6061-T6
,
1998
.
[3]
P. Colegrove,et al.
3 dimensional flow and thermal modelling of the friction stir welding process
,
2001
.
[4]
Zhili Feng,et al.
Heat Flow Model for Friction Stir Welding of Aluminum Alloys
,
1998
.
[5]
Ares J. Rosakis,et al.
Partition of plastic work into heat and stored energy in metals
,
2000
.
[6]
Lawrence E Murr,et al.
Heat input and temperature distribution in friction stir welding
,
1998
.
[7]
Zhili Feng,et al.
A Thermal Model of Friction Stir Welding
,
1998
.
[8]
A. Rosakis,et al.
A thermodynamic internal variable model for the partition of plastic work into heat and stored energy in metals
,
2000
.