Generation of Induced Neuronal Cells by the Single Reprogramming Factor ASCL1

[1]  D. Schlessinger,et al.  Identification of Transcription Factors for Lineage-Specific ESC Differentiation , 2013, Stem cell reports.

[2]  Howard Y. Chang,et al.  Hierarchical Mechanisms for Direct Reprogramming of Fibroblasts to Neurons , 2013, Cell.

[3]  T. Südhof,et al.  Neurons generated by direct conversion of fibroblasts reproduce synaptic phenotype caused by autism-associated neuroligin-3 mutation , 2013, Proceedings of the National Academy of Sciences.

[4]  T. Südhof,et al.  Rapid Single-Step Induction of Functional Neurons from Human Pluripotent Stem Cells , 2013, Neuron.

[5]  Ben A. Barres,et al.  Emerging roles of astrocytes in neural circuit development , 2013, Nature Reviews Neuroscience.

[6]  Oliver Brüstle,et al.  Leveling Waddington: the emergence of direct programming and the loss of cell fate hierarchies , 2013, Nature Reviews Molecular Cell Biology.

[7]  Thomas Vierbuchen,et al.  Molecular roadblocks for cellular reprogramming. , 2012, Molecular cell.

[8]  F. Gage,et al.  Modeling brain disease in a dish: really? , 2012, Cell stem cell.

[9]  M. Schartl,et al.  Ectopic Expression of Neurogenin 2 Alone is Sufficient to Induce Differentiation of Embryonic Stem Cells into Mature Neurons , 2012, PloS one.

[10]  G. Daley,et al.  Stem cells assessed , 2012, Nature Reviews Molecular Cell Biology.

[11]  Peter Wernet,et al.  Small molecules enable highly efficient neuronal conversion of human fibroblasts , 2012, Nature Methods.

[12]  Maria Teresa Dell'Anno,et al.  Direct generation of functional dopaminergic neurons from mouse and human fibroblasts , 2011, Nature.

[13]  Li Li,et al.  MicroRNA-mediated conversion of human fibroblasts to neurons , 2011, Nature.

[14]  Thomas Vierbuchen,et al.  Direct Lineage Conversions: Unnatural but useful? , 2011, Nature Biotechnology.

[15]  Ulrich Pfisterer,et al.  Direct conversion of human fibroblasts to dopaminergic neurons , 2011, Proceedings of the National Academy of Sciences.

[16]  Thomas Vierbuchen,et al.  Induction of human neuronal cells by defined transcription factors , 2011, Nature.

[17]  K. Eggan,et al.  Constructing and Deconstructing Stem Cell Models of Neurological Disease , 2011, Neuron.

[18]  Thomas Vierbuchen,et al.  Direct conversion of fibroblasts to functional neurons by defined factors , 2010, Nature.

[19]  T. Furuno,et al.  Effect of NeuroD2 expression on neuronal differentiation in mouse embryonic stem cells , 2009, Cell biology international.

[20]  Euiseok J. Kim,et al.  Ascl1 (Mash1) lineage cells contribute to discrete cell populations in CNS architecture , 2008, Molecular and Cellular Neuroscience.

[21]  R. Young,et al.  Stem Cells, the Molecular Circuitry of Pluripotency and Nuclear Reprogramming , 2008, Cell.

[22]  S. Przedborski,et al.  The inflammatory NADPH oxidase enzyme modulates motor neuron degeneration in amyotrophic lateral sclerosis mice , 2006, Proceedings of the National Academy of Sciences.

[23]  F. Guillemot,et al.  Sequential roles for Mash1 and Ngn2 in the generation of dorsal spinal cord interneurons , 2005, Development.

[24]  François Guillemot,et al.  Proneural genes and the specification of neural cell types , 2002, Nature Reviews Neuroscience.

[25]  François Guillemot,et al.  Mash1 and Ngn1 control distinct steps of determination and differentiation in the olfactory sensory neuron lineage. , 2002, Development.

[26]  David J. Anderson,et al.  Divergent functions of the proneural genes Mash1 and Ngn2 in the specification of neuronal subtype identity. , 2002, Genes & development.

[27]  Y. Barde,et al.  Neurotrophins are required for nerve growth during development , 2001, Nature Neuroscience.

[28]  Hideki Enomoto,et al.  The GDNF family ligands and receptors — implications for neural development , 2000, Current Opinion in Neurobiology.

[29]  F. Guillemot,et al.  A role for neural determination genes in specifying the dorsoventral identity of telencephalic neurons. , 2000, Genes & development.

[30]  David J. Anderson,et al.  Mammalian achaete-scute homolog 1 is required for the early development of olfactory and autonomic neurons , 1993, Cell.

[31]  T. Saito,et al.  Mammalian achaete-scute homolog 1 is transiently expressed by spatially restricted subsets of early neuroepithelial and neural crest cells. , 1991, Genes & development.

[32]  David J. Anderson,et al.  Two rat homologues of Drosophila achaete-scute specifically expressed in neuronal precursors , 1990, Nature.