Crucial contribution of the multiple copies of the initiator tRNA genes in the fidelity of tRNAfMet selection on the ribosomal P-site in Escherichia coli

The accuracy of the initiator tRNA (tRNAfMet) selection in the ribosomal P-site is central to the fidelity of protein synthesis. A highly conserved occurrence of three consecutive G–C base pairs in the anticodon stem of tRNAfMet contributes to its preferential selection in the P-site. In a genetic screen, using a plasmid borne copy of an inactive tRNAfMet mutant wherein the three G–C base pairs were changed, we isolated Escherichia coli strains that allow efficient initiation with the tRNAfMet mutant. Here, extensive characterization of two such strains revealed novel mutations in the metZWV promoter severely compromising tRNAfMet levels. Low cellular abundance of the chromosomally encoded tRNAfMet allows efficient initiation with the tRNAfMet mutant and an elongator tRNAGln, revealing that a high abundance of the cellular tRNAfMet is crucial for the fidelity of initiator tRNA selection on the ribosomal P-site in E. coli. We discuss possible implications of the changes in the cellular tRNAfMet abundance in proteome remodeling.

[1]  U. RajBhandary,et al.  Initiator transfer RNAs , 1994, Journal of bacteriology.

[2]  U. RajBhandary,et al.  Initiation of protein synthesis from a termination codon. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[3]  H. Noller,et al.  Involvement of 16S rRNA nucleotides G1338 and A1339 in discrimination of initiator tRNA. , 2005, Molecular cell.

[4]  Henri Grosjean,et al.  tRNomics: analysis of tRNA genes from 50 genomes of Eukarya, Archaea, and Bacteria reveals anticodon-sparing strategies and domain-specific features. , 2002, RNA.

[5]  A. D. Kelmers,et al.  Separation and comparison of primary structures of three formylmethionine tRNAs from E. coli K-12 MO. , 1973, Biochemical and biophysical research communications.

[6]  L. Gold,et al.  Domains of initiator tRNA and initiation codon crucial for initiator tRNA selection by Escherichia coli IF3. , 1990, Genes & development.

[7]  C. Gualerzi,et al.  Initiation of mRNA translation in prokaryotes. , 1990, Biochemistry.

[8]  B. Seong,et al.  Escherichia coli formylmethionine tRNA: mutations in GGGCCC sequence conserved in anticodon stem of initiator tRNAs affect initiation of protein synthesis and conformation of anticodon loop. , 1987, Proceedings of the National Academy of Sciences of the United States of America.

[9]  J. McCloskey,et al.  Role of the three consecutive G:C base pairs conserved in the anticodon stem of initiator tRNAs in initiation of protein synthesis in Escherichia coli. , 1996, RNA.

[10]  Antoine Danchin,et al.  Transcription Regulation Coupling of the Divergent argG and metY Promoters in Escherichia coli K-12 , 2003, Journal of bacteriology.

[11]  U. Varshney,et al.  Characterization of Mycobacterium tuberculosis ribosome recycling factor (RRF) and a mutant lacking six amino acids from the C-terminal end reveals that the C-terminal residues are important for its occupancy on the ribosome. , 2002, Microbiology.

[12]  D. Trevor Newton,et al.  Formylation Is Not Essential for Initiation of Protein Synthesis in All Eubacteria* , 1999, The Journal of Biological Chemistry.

[13]  B. Dubey,et al.  Impact of rRNA methylations on ribosome recycling and fidelity of initiation in Escherichia coli , 2009, Molecular microbiology.

[14]  J. Elf,et al.  Selective charging of tRNA isoacceptors induced by amino‐acid starvation , 2005, EMBO reports.

[15]  E. G. Frank,et al.  UmuD'(2)C is an error-prone DNA polymerase, Escherichia coli pol V. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[16]  N. Kleckner,et al.  Uses of transposons with emphasis on Tn10. , 1991, Methods in enzymology.

[17]  B. Wanner,et al.  One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[18]  Dube Sk,et al.  The nucleotide sequence of N-formyl-methionyl-transfer RNA. Partial digestion with pancreatic and T-1 ribonuclease and derivation of the total primary structure. , 1969 .

[19]  Jeffrey H. Miller Experiments in molecular genetics , 1972 .

[20]  H. D. de Boer,et al.  Specialized ribosome system: preferential translation of a single mRNA species by a subpopulation of mutated ribosomes in Escherichia coli. , 1987, Proceedings of the National Academy of Sciences of the United States of America.

[21]  D. Court,et al.  A highly efficient Escherichia coli-based chromosome engineering system adapted for recombinogenic targeting and subcloning of BAC DNA. , 2001, Genomics.

[22]  B. Nichols,et al.  Sequence Analysis of Tn10 Insertion Sites in a Collection of Escherichia coli Strains Used for Genetic Mapping and Strain Construction , 1998, Journal of bacteriology.

[23]  C. Harley,et al.  Analysis of E. coli promoter sequences. , 1987, Nucleic acids research.

[24]  Y. Mechulam,et al.  Disruption of the gene for Met-tRNA(fMet) formyltransferase severely impairs growth of Escherichia coli , 1992, Journal of bacteriology.

[25]  U. RajBhandary,et al.  Altered discrimination of start codons and initiator tRNAs by mutant initiation factor 3. , 2001, RNA.

[26]  A. Sentenac,et al.  Modulation of Yeast Genome Expression in Response to Defective RNA Polymerase III-Dependent Transcription , 2005, Molecular and Cellular Biology.

[27]  D. Kanduc,et al.  Changes of tRNA population during compensatory cell proliferation: differential expression of methionine-tRNA species. , 1997, Archives of biochemistry and biophysics.

[28]  B. Low Formation of merodiploids in matings with a class of Rec- recipient strains of Escherichia coli K12. , 1968, Proceedings of the National Academy of Sciences of the United States of America.

[29]  A. Grossman,et al.  A collection of strains containing genetically linked alternating antibiotic resistance elements for genetic mapping of Escherichia coli. , 1989, Microbiological reviews.

[30]  U. RajBhandary,et al.  Escherichia coli B lacks one of the two initiator tRNA species present in E. coli K-12 , 1992, Journal of bacteriology.

[31]  M. Berlyn Linkage Map of Escherichia coli K-12, Edition 10: The Traditional Map , 1998, Microbiology and Molecular Biology Reviews.

[32]  U. Varshney,et al.  The Fate of the Initiator tRNAs Is Sensitive to the Critical Balance between Interacting Proteins* , 2000, The Journal of Biological Chemistry.

[33]  J Frank,et al.  Location of translational initiation factor IF3 on the small ribosomal subunit. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[34]  Akira Ishihama,et al.  Modulation of the nucleoid, the transcription apparatus, and the translation machinery in bacteria for stationary phase survival , 1999, Genes to cells : devoted to molecular & cellular mechanisms.

[35]  T. Earnest,et al.  Crystal Structure of the Ribosome at 5.5 Å Resolution , 2001, Science.

[36]  M. Ehrenberg,et al.  How initiation factors maximize the accuracy of tRNA selection in initiation of bacterial protein synthesis. , 2006, Molecular cell.

[37]  P. Sharp,et al.  Introduction of UAG, UAA, and UGA nonsense mutations at a specific site in the Escherichia coli chloramphenicol acetyltransferase gene: use in measurement of amber, ochre, and opal suppression in mammalian cells , 1986, Molecular and cellular biology.

[38]  J. Sambrook,et al.  Molecular Cloning: A Laboratory Manual , 2001 .

[39]  O. Berg,et al.  Reducing the fitness cost of antibiotic resistance by amplification of initiator tRNA genes. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[40]  B. Clark,et al.  The nucleotide sequence of N-formyl-methionyl-transfer RNA. Products of complete digestion with ribonuclease T-1 and pancreatic ribonuclease and derivation of their sequences. , 1969, European journal of biochemistry.

[41]  A. Dastur,et al.  Analysis of the initiator tRNA genes from a slow- and a fast-growing mycobacterium , 2002, Archives of Microbiology.

[42]  L. Gold,et al.  Posttranscriptional regulatory mechanisms in Escherichia coli. , 1988, Annual review of biochemistry.

[43]  Imamoto Fumio,et al.  Differential transcriptional control of the two tRNA(fMet) genes of Escherichia coli K-12. , 1988, Gene.

[44]  H. Noller,et al.  Interaction of translation initiation factor 3 with the 30S ribosomal subunit. , 2001, Molecular cell.

[45]  A. Higashitani,et al.  A general and fast method for mapping mutations on the Escherichia coli chromosome. , 1994, Nucleic acids research.

[46]  Kano Yasunobu,et al.  Construction and characterization of an Escherichia coli mutant with a deletion of the metZ gene encoding tRNA (f1Met). , 1991, Gene.

[47]  S. Thakur,et al.  Role of 16S ribosomal RNA methylations in translation initiation in Escherichia coli , 2008, The EMBO journal.

[48]  L. Gold,et al.  Selection of the initiator tRNA by Escherichia coli initiation factors. , 1989, Genes & development.

[49]  M. Selmer,et al.  Structure of the 70S Ribosome Complexed with mRNA and tRNA , 2006, Science.