Preparation of titanium dioxide nanotube arrays on titanium mesh by anodization in (NH4)2SO4/NH4F electrolyte

The self-organized titanium dioxide (TiO2) nanotube arrays on titanium mesh were prepared by electrochemical anodization with the neutral electrolyte containing ammonium sulfate and ammonium fluoride in a two-electrode electrochemical cell. The effects of the fluoride ion concentration, the anodic potential, and the oxidation time on the formation of the titanium dioxide nanostructures on titanium mesh with complex geometry were investigated. The anodized titanium mesh was characterized by field emission scanning electron microscope and in situ high temperature X-ray diffraction. The results show that the titanium dioxide nanotube arrays are grown in a radially outward direction around the titanium wire. The optimized anodization condition for preparing titanium dioxide nanotube arrays with superior architecture on the titanium mesh is 0.5wt% of ammonium fluoride, 20V of applied potential, and 20min of oxidation time. The amorphous titanium dioxide nanotubes on titanium mesh turn to anatase phase at 400 degrees C and further to rutile phase at 650 degrees C.

[1]  Koichi Niihara,et al.  Formation of titanium oxide nanotube , 1998 .

[2]  Sungho Jin,et al.  Dye-sensitized solar cell constructed with titanium mesh and 3-D array of TiO2 nanotubes. , 2010, The journal of physical chemistry. B.

[3]  J. Macák,et al.  Electrochemical formation of self-organized anodic nanotube coating on Ti-28Zr-8Nb biomedical alloy surface. , 2008, Acta biomaterialia.

[4]  Min Gyu Kim,et al.  Tio2@Sn core–shell nanotubes for fast and high density Li-ion storage material , 2008 .

[5]  Xie Quan,et al.  Preparation of titania nanotubes and their environmental applications as electrode. , 2005, Environmental science & technology.

[6]  Craig A Grimes,et al.  Use of highly-ordered TiO(2) nanotube arrays in dye-sensitized solar cells. , 2006, Nano letters.

[7]  Patrik Schmuki,et al.  High-aspect-ratio TiO2 nanotubes by anodization of titanium. , 2005, Angewandte Chemie.

[8]  Zhaoqi Sun,et al.  Layer-by-Layer Growth Mechanism of TiO2 Nanotube Arrays , 2011 .

[9]  Craig A. Grimes,et al.  Crystallization and high-temperature structural stability of titanium oxide nanotube arrays , 2003 .

[10]  Nicholas M. Harrison,et al.  First-principles calculations of the phase stability of TiO2 , 2002 .

[11]  Craig A. Grimes,et al.  Synthesis and application of highly ordered arrays of TiO2 nanotubes , 2007 .

[12]  Longtu Li,et al.  Fabrication of titanium oxide nanotube arrays by anodic oxidation , 2005 .

[13]  A. Mohamed,et al.  Influence of electrolyte pH on TiO2 nanotube formation by Ti anodization , 2009 .

[14]  L. Fang,et al.  Measurement and Analyses of Molten Nickel-Cobalt Alloy Surface Tension , 2008 .

[15]  Craig A. Grimes,et al.  Titanium oxide nanotube arrays prepared by anodic oxidation , 2001 .

[16]  S. Shinkai,et al.  Creation of Novel Helical Ribbon and Double-Layered Nanotube TiO2 Structures Using an Organogel Template , 2002 .

[17]  A. Bard,et al.  Novel carbon-doped TiO2 nanotube arrays with high aspect ratios for efficient solar water splitting. , 2006, Nano letters.

[18]  D. Bavykin,et al.  The effect of hydrothermal conditions on the mesoporous structure of TiO2 nanotubes , 2004 .

[19]  Jan M. Macak,et al.  Anodic growth of self-organized anodic TiO2 nanotubes in viscous electrolytes , 2006 .

[20]  Craig A. Grimes,et al.  Hydrogen sensing using titania nanotubes , 2003 .

[21]  P. Drob,et al.  Characterisation of anodic oxide films formed on titanium and two ternary titanium alloys in hydrochloric acid solutions , 2000 .

[22]  Mano Misra,et al.  Vertically oriented TiO2 nanotube arrays grown on Ti meshes for flexible dye-sensitized solar cells , 2009 .

[23]  Hongxing Yang,et al.  The use of Ti meshes with self‐organized TiO2 nanotubes as photoanodes of all‐Ti dye‐sensitized solar cells , 2010 .

[24]  Lei Jiang,et al.  3-D vertical arrays of TiO2 nanotubes on Ti meshes: Efficient photoanodes for water photoelectrolysis , 2011 .

[25]  P. Kulesza,et al.  Metal oxide photoanodes for solar hydrogen production , 2008 .

[26]  Marc Aucouturier,et al.  Anodic oxidation of titanium and TA6V alloy in chromic media. An electrochemical approach , 1999 .

[27]  C. Tsouris,et al.  Synthesis and characterization of anodized titanium-oxide nanotube arrays , 2009 .

[28]  Patrik Schmuki,et al.  Self-Organized Porous Titanium Oxide Prepared in H 2 SO 4 / HF Electrolytes , 2003 .

[29]  Jan M. Macak,et al.  Self-organized porous titanium oxide prepared in Na2SO4/NaF electrolytes , 2005 .

[30]  Craig A. Grimes,et al.  A review on highly ordered, vertically oriented TiO2 nanotube arrays: Fabrication, material properties, and solar energy applications , 2006 .

[31]  Craig A. Grimes,et al.  The effect of electrolyte composition on the fabrication of self-organized titanium oxide nanotube arrays by anodic oxidation , 2005 .

[32]  Craig A Grimes,et al.  Metal oxide nanoarchitectures for environmental sensing. , 2003, Journal of nanoscience and nanotechnology.

[33]  T. Kitamura,et al.  Dye-sensitized TiO2 nanotube solar cells: fabrication and electronic characterization. , 2005, Physical chemistry chemical physics : PCCP.

[34]  Craig A Grimes,et al.  Fabrication of highly ordered TiO2 nanotube arrays using an organic electrolyte. , 2005, The journal of physical chemistry. B.

[35]  P. Hoyer,et al.  Formation of a Titanium Dioxide Nanotube Array , 1996 .

[36]  Xuefeng Guo,et al.  Colloids seeded deposition: growth of titania nanotubes in solution. , 2006, Journal of the American Chemical Society.

[37]  Jiaguo Yu,et al.  Effect of calcination temperature on morphology and photoelectrochemical properties of anodized titanium dioxide nanotube arrays , 2010 .

[38]  Patrik Schmuki,et al.  Self-organized TiO2 nanotube layers as highly efficient photocatalysts. , 2007, Small.