An Improved Bound on the Sizes of Matchings Guaranteeing a Rainbow Matching
暂无分享,去创建一个
[1] Ron Aharoni,et al. On a Generalization of the Ryser‐Brualdi‐Stein Conjecture , 2013, J. Graph Theory.
[2] J. Dénes,et al. Latin squares and their applications , 1974 .
[3] Gábor N. Sárközy,et al. Rainbow matchings in bipartite multigraphs , 2015, Period. Math. Hung..
[4] Ron Aharoni,et al. Rainbow Sets in the Intersection of Two Matroids , 2013, Electron. Notes Discret. Math..
[5] Andries E. Brouwer,et al. A lower bound for the length of partial transversals in a latin square , 1978 .
[6] Leslie Hogben,et al. Combinatorial Matrix Theory , 2013 .
[7] Arthur A. Drisko. Transversals in Row-Latin Rectangles , 1998, J. Comb. Theory, Ser. A.
[8] Daniel Kotlar,et al. Large matchings in bipartite graphs have a rainbow matching , 2014, Eur. J. Comb..
[9] Ian M. Wanless,et al. Rainbow matchings and transversals , 2014, Australas. J Comb..
[10] David E. Woolbright. An n x n Latin Square Has a Transversal with at Least n - square root of n Distinct Symbols , 1978, J. Comb. Theory, Ser. A.
[11] S. Stein. TRANSVERSALS OF LATIN SQUARES AND THEIR GENERALIZATIONS , 1975 .
[12] Ron Aharoni,et al. Rainbow Matchings in r-Partite r-Graphs , 2009, Electron. J. Comb..