Packing congruent hyperspheres into a hypersphere

The paper considers a problem of packing the maximal number of congruent nD hyperspheres of given radius into a larger nD hypersphere of given radius where n = 2, 3, . . . , 24. Solving the problem is reduced to solving a sequence of packing subproblems provided that radii of hyperspheres are variable. Mathematical models of the subproblems are constructed. Characteristics of the mathematical models are investigated. On the ground of the characteristics we offer a solution approach. For n ≤ 3 starting points are generated either in accordance with the lattice packing of circles and spheres or in a random way. For n > 3 starting points are generated in a random way. A procedure of perturbation of lattice packings is applied to improve convergence. We use the Zoutendijk feasible direction method to search for local maxima of the subproblems. To compute an approximation to a global maximum of the problem we realize a non-exhaustive search of local maxima. Our results are compared with the benchmark results for n = 2. A number of numerical results for 2 ≤ n ≤ 24 are given.

[1]  T. Hales The Kepler conjecture , 1998, math/9811078.

[2]  J. Gondzio HOPDM (version 2.12) — A fast LP solver based on a primal-dual interior point method , 1995 .

[3]  Yu Zheng,et al.  An Effective Hybrid Algorithm for the Circles and Spheres Packing Problems , 2009, COCOA.

[4]  Monica L. Skoge,et al.  Packing hyperspheres in high-dimensional Euclidean spaces. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[5]  Josef Kallrath,et al.  Cutting circles and polygons from area-minimizing rectangles , 2009, J. Glob. Optim..

[6]  Mhand Hifi,et al.  A Literature Review on Circle and Sphere Packing Problems: Models and Methodologies , 2009, Adv. Oper. Res..

[7]  Federico Rodriguez Hertz Stable ergodicity of certain linear automorphisms of the torus , 2002 .

[8]  Tony Hürlimann Modeling Languages in Optimization: A New Paradigm , 2009, Encyclopedia of Optimization.

[9]  Ernesto G. Birgin,et al.  Minimizing the object dimensions in circle and sphere packing problems , 2008, Comput. Oper. Res..

[10]  Panos M. Pardalos,et al.  Encyclopedia of Optimization , 2006 .

[11]  L. Fejes Über einen geometrischen Satz , 1940 .

[12]  N. J. A. Sloane,et al.  Sphere Packings, Lattices and Groups , 1987, Grundlehren der mathematischen Wissenschaften.

[13]  F. Stillinger,et al.  Exactly solvable disordered sphere-packing model in arbitrary-dimensional Euclidean spaces. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[14]  Panos M. Pardalos,et al.  New results in the packing of equal circles in a square , 1995, Discret. Math..

[15]  Nikolaos V. Sahinidis,et al.  A polyhedral branch-and-cut approach to global optimization , 2005, Math. Program..

[16]  Yu. G. Stoyan,et al.  Packing cylinders and rectangular parallelepipeds with distances between them into a given region , 2009, Eur. J. Oper. Res..

[17]  Andrea Grosso,et al.  Solving the problem of packing equal and unequal circles in a circular container , 2010, J. Glob. Optim..

[18]  Yuriy Stoyan,et al.  Packing Identical Spheres into a Rectangular Parallelepiped , 2008 .