On the Weak-Injectivity Profile of a Ring

[1]  S. López-Permouth,et al.  Poor modules with no proper poor direct summands , 2018 .

[2]  S. López-Permouth,et al.  Rugged modules: The opposite of flatness , 2018 .

[3]  S. López-Permouth,et al.  PURE-INJECTIVITY FROM A DIFFERENT PERSPECTIVE , 2017, Glasgow Mathematical Journal.

[4]  Nguyen Khanh Tung,et al.  Rings whose cyclic modules have restricted injectivity domains , 2016 .

[5]  Yılmaz Durǧun An alternative perspective on flatness of modules , 2016 .

[6]  S. López-Permouth,et al.  On the Pure-injectivity Profile of a Ring , 2015 .

[7]  R. Alizade,et al.  Poor and pi-poor Abelian groups , 2015, 1505.03300.

[8]  Sergio R. L'opez-Permouth,et al.  AN ALTERNATIVE PERSPECTIVE ON PROJECTIVITY OF MODULES , 2012, Glasgow Mathematical Journal.

[9]  S. López-Permouth,et al.  Rings whose modules have maximal or minimal projectivity domain , 2012 .

[10]  Sergio R. L'opez-Permouth,et al.  Characterizing rings in terms of the extent of the injectivity and projectivity of their modules , 2011, 1111.2090.

[11]  S. López-Permouth,et al.  An alternative perspective on injectivity of modules , 2011 .

[12]  S. López-Permouth,et al.  Rings whose modules have maximal or minimal injectivity domains , 2011 .

[13]  S. López-Permouth,et al.  POOR MODULES: THE OPPOSITE OF INJECTIVITY , 2010, Glasgow Mathematical Journal.

[14]  A. Tuganbaev Modules over hereditary Noetherian prime rings , 2000 .

[15]  S. Jain,et al.  Weakly-injective modules over hereditary noetherian prime rings , 1995, Journal of the Australian Mathematical Society. Series A. Pure Mathematics and Statistics.

[16]  S. Jain,et al.  A survey on the theory of weakly injective mod-ules , 1994 .

[17]  S. López-Permouth,et al.  Some characterizations of semiprime Goldie rings , 1993, Glasgow Mathematical Journal.

[18]  S. Jain,et al.  Rings whose cyclics have finite Goldie dimension , 1992 .

[19]  S. López-Permouth Rings characterized by their weakly-injective modules , 1992, Glasgow Mathematical Journal.

[20]  S. Jain,et al.  On a class of QI-rings , 1992, Glasgow Mathematical Journal.

[21]  Sergio R. López-Permouth,et al.  Rings whose cyclics are essentially embeddable in projective modules , 1990 .

[22]  Ken R. Goodearl,et al.  An Introduction to Noncommutative Noetherian Rings , 1989 .

[23]  R. Damiano A right PCI ring is right Noetherian , 1979 .

[24]  Surjeet Singh Quasi-Injective and Quasi-Projective Modules Over Hereditary Noetherian Prime Rings , 1974, Canadian Journal of Mathematics.

[25]  D. Eisenbud,et al.  Modules over Dedekind prime rings , 1970 .

[26]  Joaquín Pascual,et al.  Infinite Abelian Groups , 1970 .