A non-ordinary state-based peridynamics formulation for thermoplastic fracture

In this study, a three-dimensional (3D) non-ordinary state-based peridynamics (NOSB-PD) formulation for thermomechanical brittle and ductile fracture is presented. The Johnson–Cook (JC) constitutive and damage model is used to taken into account plastic hardening, thermal softening and fracture. The formulation is validated by considering two benchmark examples: 1) The Taylor-bar impact and 2) the Kalthoff–Winkler tests. The results show good agreements between the numerical simulations and the experimental results.

[1]  Guirong Liu,et al.  An adaptive singular ES-FEM for mechanics problems with singular field of arbitrary order , 2013 .

[2]  T. Rabczuk,et al.  A meshfree thin shell method for non‐linear dynamic fracture , 2007 .

[3]  T. Rabczuk,et al.  Molecular dynamics/xfem coupling by a three-dimensional extended bridging domain with applications to dynamic brittle fracture , 2013 .

[4]  Timon Rabczuk,et al.  Finite strain fracture of plates and shells with configurational forces and edge rotations , 2013 .

[5]  G. R. Johnson,et al.  A CONSTITUTIVE MODEL AND DATA FOR METALS SUBJECTED TO LARGE STRAINS, HIGH STRAIN RATES AND HIGH TEMPERATURES , 2018 .

[6]  Erkan Oterkus,et al.  Peridynamic Theory and Its Applications , 2013 .

[7]  Xuemei Wang,et al.  Validation of Johnson-Cook plasticity and damage model using impact experiment , 2013 .

[8]  Timon Rabczuk,et al.  Element-wise fracture algorithm based on rotation of edges , 2013 .

[9]  Jörg F. Kalthoff,et al.  Shadow Optical Analysis Of Dynamic Shear Fracture , 1988 .

[10]  Florin Bobaru,et al.  The peridynamic formulation for transient heat conduction , 2010 .

[11]  A. C. Whiffin The use of flat-ended projectiles for determining dynamic yield stress - II. Tests on various metallic materials , 1948, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[12]  Timon Rabczuk,et al.  An adaptive multiscale method for quasi-static crack growth , 2014 .

[13]  T. Belytschko,et al.  A simplified mesh‐free method for shear bands with cohesive surfaces , 2007 .

[14]  S. Silling Reformulation of Elasticity Theory for Discontinuities and Long-Range Forces , 2000 .

[15]  Norman Jones,et al.  Dynamic Inelastic Failure of Structures. , 1997 .

[16]  D. Agard,et al.  Microtubule nucleation by γ-tubulin complexes , 2011, Nature Reviews Molecular Cell Biology.

[17]  E. Madenci,et al.  Prediction of crack paths in a quenched glass plate by using peridynamic theory , 2009 .

[18]  Florin Bobaru,et al.  A peridynamic formulation for transient heat conduction in bodies with evolving discontinuities , 2012, J. Comput. Phys..

[19]  A. Needleman,et al.  Analysis of a brittle-ductile transition under dynamic shear loading , 1995 .

[20]  J. C. Simo,et al.  A priori stability estimates and unconditionally stable product formula algorithms for nonlinear coupled thermoplasticity , 1993 .

[21]  T. Belytschko,et al.  A three dimensional large deformation meshfree method for arbitrary evolving cracks , 2007 .

[22]  Ted Belytschko,et al.  Mesh-free Galerkin simulations of dynamic shear band propagation and failure mode transition , 2002 .

[23]  J. F. Kalthoff Modes of dynamic shear failure in solids , 2000 .

[24]  Charles E. Augarde,et al.  Fracture modeling using meshless methods and level sets in 3D: Framework and modeling , 2012 .

[25]  Selda Oterkus,et al.  Simulation of electro-migration through peridynamics , 2013, 2013 IEEE 63rd Electronic Components and Technology Conference.

[26]  Geoffrey Ingram Taylor,et al.  The Latent Energy Remaining in a Metal after Cold Working , 1934 .

[27]  A. Rosakis,et al.  Dynamically propagating shear bands in impact-loaded prenotched plates—II. Numerical simulations , 1996 .

[28]  Ted Belytschko,et al.  A finite element method for crack growth without remeshing , 1999 .

[29]  Timon Rabczuk,et al.  Initially rigid cohesive laws and fracture based on edge rotations , 2013 .

[30]  Timon Rabczuk,et al.  Detection of flaws in piezoelectric structures using extended FEM , 2013 .

[31]  H. Waisman,et al.  Isogeometric analysis of shear bands , 2014 .

[32]  T. Rabczuk,et al.  XLME interpolants, a seamless bridge between XFEM and enriched meshless methods , 2014 .

[33]  M. Finn,et al.  High strain rate tensile testing of automotive aluminum alloy sheet , 2005 .

[34]  Timon Rabczuk,et al.  Concurrent multiscale modeling of three dimensional crack and dislocation propagation , 2015, Adv. Eng. Softw..

[35]  T. L. Warren,et al.  A non-ordinary state-based peridynamic method to model solid material deformation and fracture , 2009 .

[36]  Stéphane Bordas,et al.  A meshless adaptive multiscale method for fracture , 2015 .

[37]  M. Ortiz,et al.  Adaptive Lagrangian modelling of ballistic penetration of metallic targets , 1997 .

[38]  S. Silling,et al.  Viscoplasticity using peridynamics , 2010 .

[39]  T. Rabczuk,et al.  T-spline based XIGA for fracture analysis of orthotropic media , 2015 .

[40]  Wing Kam Liu,et al.  Dynamic shear band propagation and micro-structure of adiabatic shear band , 2001 .

[41]  T. Børvik,et al.  A computational model of viscoplasticity and ductile damage for impact and penetration , 2001 .

[42]  Timon Rabczuk,et al.  Finite strain fracture of 2D problems with injected anisotropic softening elements , 2014 .

[43]  R. Lehoucq,et al.  Peridynamic Simulation of Electromigration , 2008 .

[44]  A. Agwai,et al.  A Peridynamic Approach for Coupled Fields , 2011 .

[45]  Phill-Seung Lee,et al.  Phantom-node method for shell models with arbitrary cracks , 2012 .

[46]  A. Eringen,et al.  Nonlocal Continuum Field Theories , 2002 .

[47]  Julian J. Rimoli,et al.  An approach for incorporating classical continuum damage models in state-based peridynamics , 2013 .

[48]  S. Silling,et al.  Peridynamic States and Constitutive Modeling , 2007 .

[49]  Selda Oterkus,et al.  Peridynamic thermal diffusion , 2014, J. Comput. Phys..

[50]  Selda Oterkus,et al.  Fully coupled peridynamic thermomechanics , 2014 .

[51]  Geoffrey Ingram Taylor,et al.  The use of flat-ended projectiles for determining dynamic yield stress I. Theoretical considerations , 1948, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[52]  Charles E. Augarde,et al.  A meshless sub-region radial point interpolation method for accurate calculation of crack tip fields , 2014 .

[53]  Ted Belytschko,et al.  A method for dynamic crack and shear band propagation with phantom nodes , 2006 .

[54]  G. R. Johnson,et al.  Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures , 1985 .

[55]  T. Rabczuk,et al.  Phase-field modeling of fracture in linear thin shells , 2014 .

[56]  D. Flanagan,et al.  An accurate numerical algorithm for stress integration with finite rotations , 1987 .

[57]  H. Waisman,et al.  A Pian–Sumihara type element for modeling shear bands at finite deformation , 2014 .

[58]  Ted Belytschko,et al.  Cracking particles: a simplified meshfree method for arbitrary evolving cracks , 2004 .

[59]  W. E. Carrington,et al.  The use of flat-ended projectiles for determining dynamic yield stress III. Changes in microstructure caused by deformation under impact at high-striking velocities , 1948, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[60]  S. Mohammadi,et al.  Strong tangential discontinuity modeling of shear bands using the extended finite element method , 2013, Computational Mechanics.

[61]  B. Kilic,et al.  Peridynamic Theory for Thermomechanical Analysis , 2010, IEEE Transactions on Advanced Packaging.

[62]  Francisco Armero,et al.  A new unconditionally stable fractional step method for non‐linear coupled thermomechanical problems , 1992 .

[63]  John Anthony Mitchell A nonlocal, ordinary, state-based plasticity model for peridynamics. , 2011 .

[64]  Timon Rabczuk,et al.  A computational library for multiscale modeling of material failure , 2013, Computational Mechanics.

[65]  Shaofan Li,et al.  Meshfree simulations of thermo-mechanical ductile fracture , 2006 .

[66]  H. Nguyen-Xuan,et al.  An extended isogeometric thin shell analysis based on Kirchhoff-Love theory , 2015 .

[67]  G. R. Johnson,et al.  Evaluation of cylinder‐impact test data for constitutive model constants , 1988 .

[68]  H. Waisman,et al.  Mesh insensitive formulation for initiation and growth of shear bands using mixed finite elements , 2013 .

[69]  Hung Nguyen-Xuan,et al.  A Phantom-Node Method with Edge-Based Strain Smoothing for Linear Elastic Fracture Mechanics , 2013, J. Appl. Math..

[70]  Charles E. Anderson,et al.  Taylor Anvil Impact , 2005 .

[71]  Timon Rabczuk,et al.  Efficient coarse graining in multiscale modeling of fracture , 2014 .