Boosted mutation-based Harris hawks optimizer for parameters identification of single-diode solar cell models

Abstract In order to realize the performance of the PV model before being installed, it is often indispensable to develop reliable and accurate parameter identification methods for dealing with the PV models. Up to now, several stochastic methods have been proposed to analyze the feature space of this problem. However, some of the stochastic-based methods may present unsatisfactory results due to their insufficient exploration and exploitation inclinations, and the multimodal and nonlinearity existed in PV parameters extraction problems. In this paper, a Boosted Harris Hawk’s Optimization (BHHO) technique is proposed to achieve a more stable model and effectively estimate the parameters of the single diode PV model. The BHHO method combines random exploratory steps of evolution inspired by the flower pollination algorithm (FPA) and a powerful mutation scheme of the differential evolution (DE) with 2-Opt algorithms. The proposed strategies not only help BHHO algorithm to accelerate the convergence rate but also assist it in scanning new regions of the search basins. The results demonstrate that the proposed BHHO is more accurate and reliable compared to the basic version and several well-established methods. The BHHO method was rigorously validated by using real experimental data under seven sunlight and temperature conditions. Furthermore, the statistical criteria indicate that the proposed BHHO method has lower errors among other peers, which is highly useful for real-world applications.

[1]  Yining Wang,et al.  The Forecasting of PM2.5 Using a Hybrid Model Based on Wavelet Transform and an Improved Deep Learning Algorithm , 2019, IEEE Access.

[2]  Mehdi Bigdeli,et al.  Very accurate parameter estimation of single- and double-diode solar cell models using a modified artificial bee colony algorithm , 2016 .

[3]  G. Farahani,et al.  A novel approximate explicit double-diode model of solar cells for use in simulation studies , 2017 .

[4]  Jieming Ma,et al.  Comparative performance on photovoltaic model parameter identification via bio-inspired algorithms , 2016 .

[5]  T. Easwarakhanthan,et al.  Nonlinear Minimization Algorithm for Determining the Solar Cell Parameters with Microcomputers , 1986 .

[6]  Saad Mekhilef,et al.  Parameter extraction of solar photovoltaic modules using penalty-based differential evolution , 2012 .

[7]  Hossam Faris,et al.  Time-varying hierarchical chains of salps with random weight networks for feature selection , 2020, Expert Syst. Appl..

[8]  N. Rajasekar,et al.  Parameter extraction of two diode solar PV model using Fireworks algorithm , 2016 .

[9]  Souad Chebbi,et al.  Identification of unknown parameters of solar cell models: A comprehensive overview of available approaches , 2018, Renewable and Sustainable Energy Reviews.

[10]  Dalia Yousri,et al.  Parameters extraction of the three diode model for the multi-crystalline solar cell/module using Moth-Flame Optimization Algorithm , 2016 .

[11]  Wei Gao,et al.  An independent set degree condition for fractional critical deleted graphs , 2019, Discrete & Continuous Dynamical Systems - S.

[12]  Hossam Faris,et al.  An efficient binary Salp Swarm Algorithm with crossover scheme for feature selection problems , 2018, Knowl. Based Syst..

[13]  Yu Zhang,et al.  Development of a new compound method to extract the five parameters of PV modules , 2014 .

[14]  Vineet Kumar,et al.  PV cell and module efficient parameters estimation using Evaporation Rate based Water Cycle Algorithm , 2017, Swarm Evol. Comput..

[15]  Wenyin Gong,et al.  Parameter extraction of solar cell models using repaired adaptive differential evolution , 2013 .

[16]  Weibiao Qiao,et al.  An Improved Dolphin Swarm Algorithm Based on Kernel Fuzzy C-Means in the Application of Solving the Optimal Problems of Large-Scale Function , 2020, IEEE Access.

[17]  Mutlu Boztepe,et al.  Neural network based solar cell model , 2006 .

[18]  A. R. Jordehi Enhanced leader particle swarm optimisation (ELPSO): An efficient algorithm for parameter estimation of photovoltaic (PV) cells and modules , 2018 .

[19]  Xin-She Yang,et al.  Bio-inspired computation: Where we stand and what's next , 2019, Swarm Evol. Comput..

[20]  Weibiao Qiao,et al.  Forecast the electricity price of U.S. using a wavelet transform-based hybrid model , 2020 .

[21]  V. C. Veera Reddy,et al.  Application of flower pollination algorithm for optimal placement and sizing of distributed generation in Distribution systems , 2016 .

[22]  Jinsoo Kim,et al.  A comparative study of energy and carbon efficiency for emerging countries using panel stochastic frontier analysis , 2019, Scientific Reports.

[23]  David H. Wolpert,et al.  No free lunch theorems for optimization , 1997, IEEE Trans. Evol. Comput..

[24]  Qiao Weibiao Differential Scanning Calorimetry and Electrochemical Tests for the Analysis of Delamination of 3PE Coatings , 2019, International Journal of Electrochemical Science.

[25]  Marcelo Gradella Villalva,et al.  Comprehensive Approach to Modeling and Simulation of Photovoltaic Arrays , 2009, IEEE Transactions on Power Electronics.

[26]  Dinesh C. S. Bisht,et al.  A three diode model for industrial solar cells and estimation of solar cell parameters using PSO algorithm , 2015 .

[27]  Z. Salam,et al.  An accurate modelling of the two-diode model of PV module using a hybrid solution based on differential evolution , 2016 .

[28]  Xuehua Zhao,et al.  Parameters identification of photovoltaic cells and modules using diversification-enriched Harris hawks optimization with chaotic drifts , 2020 .

[29]  Xin-She Yang,et al.  Flower Pollination Algorithms , 2021, Nature-Inspired Optimization Algorithms.

[30]  N. Rajasekar,et al.  A new hybrid bee pollinator flower pollination algorithm for solar PV parameter estimation , 2017 .

[31]  Jing Liang,et al.  Multiple learning backtracking search algorithm for estimating parameters of photovoltaic models , 2018, Applied Energy.

[32]  Chandima Gomes,et al.  Optimal Design of Standalone Photovoltaic System Based on Multi-Objective Particle Swarm Optimization: A Case Study of Malaysia , 2020, Processes.

[33]  Hashim Hizam,et al.  Estimation of photovoltaic module model’s parameters using an improved electromagnetic-like algorithm , 2020, Neural Computing and Applications.

[34]  Lijun Wu,et al.  Parameter extraction of photovoltaic models from measured I-V characteristics curves using a hybrid trust-region reflective algorithm , 2018, Applied Energy.

[35]  Yu He,et al.  Parameter extraction of solar photovoltaic models using an improved whale optimization algorithm , 2018, Energy Conversion and Management.

[36]  Zhe Yang,et al.  Modified Dolphin Swarm Algorithm Based on Chaotic Maps for Solving High-Dimensional Function Optimization Problems , 2019, IEEE Access.

[37]  Hossam Faris,et al.  An enhanced associative learning-based exploratory whale optimizer for global optimization , 2019, Neural Computing and Applications.

[38]  Marco Mussetta,et al.  Metaheuristic Algorithm for Photovoltaic Parameters: Comparative Study and Prediction with a Firefly Algorithm , 2018 .

[39]  A. Rezaee Jordehi,et al.  Parameter estimation of solar photovoltaic (PV) cells: A review , 2016 .

[40]  Zainal Salam,et al.  A New Three-point-based Approach for the Parameter Extraction of Photovoltaic Cells , 2019, Applied Energy.

[41]  Hossam Faris,et al.  Binary dragonfly optimization for feature selection using time-varying transfer functions , 2018, Knowl. Based Syst..

[42]  Wei Gao,et al.  Partial multi-dividing ontology learning algorithm , 2018, Inf. Sci..

[43]  Zhe Yang,et al.  Solving Large-Scale Function Optimization Problem by Using a New Metaheuristic Algorithm Based on Quantum Dolphin Swarm Algorithm , 2019, IEEE Access.

[44]  D. Kler,et al.  A novel approach to parameter estimation of photovoltaic systems using hybridized optimizer , 2019, Energy Conversion and Management.

[45]  Montaser Abd El Sattar,et al.  Novel seven-parameter model for photovoltaic modules , 2014 .

[46]  Alain K. Tossa,et al.  A new approach to estimate the performance and energy productivity of photovoltaic modules in real operating conditions , 2014 .

[47]  Attia A. El-Fergany,et al.  Parameter extraction of photovoltaic generating units using multi-verse optimizer , 2016 .

[48]  Efstratios I. Batzelis,et al.  A Method for the Analytical Extraction of the Single-Diode PV Model Parameters , 2016, IEEE Transactions on Sustainable Energy.

[49]  Xu Chen,et al.  An opposition-based sine cosine approach with local search for parameter estimation of photovoltaic models , 2019, Energy Conversion and Management.

[50]  Hossam Faris,et al.  Harris hawks optimization: Algorithm and applications , 2019, Future Gener. Comput. Syst..

[51]  J. Daemen,et al.  Discontinuous fatigue of salt rock with low-stress intervals , 2019, International Journal of Rock Mechanics and Mining Sciences.

[52]  Ali Shahhoseini,et al.  A fast modeling of the double-diode model for PV modules using combined analytical and numerical approach , 2018 .

[53]  Wei Gao,et al.  Nano properties analysis via fourth multiplicative ABC indicator calculating , 2017, Arabian Journal of Chemistry.

[54]  D. Jiang,et al.  Study on the mechanism of roof collapse and leakage of horizontal cavern in thinly bedded salt rocks , 2019, Environmental Earth Sciences.

[55]  Hui Gao,et al.  Satellite Image De-Noising With Harris Hawks Meta Heuristic Optimization Algorithm and Improved Adaptive Generalized Gaussian Distribution Threshold Function , 2019, IEEE Access.

[56]  P. A. Prince,et al.  Lévy flight search patterns of wandering albatrosses , 1996, Nature.

[57]  D. Jiang,et al.  Stability study and optimization design of small-spacing two-well (SSTW) salt caverns for natural gas storages , 2020 .

[58]  Kashif Ishaque,et al.  Cell modelling and model parameters estimation techniques for photovoltaic simulator application: A review , 2015 .

[59]  Mohammadamin Azimi,et al.  A hybrid algorithm for carbon dioxide emissions forecasting based on improved lion swarm optimizer , 2020 .

[60]  Satvir Singh,et al.  Butterfly optimization algorithm: a novel approach for global optimization , 2018, Soft Computing.

[61]  Prudence W. H. Wong,et al.  Parameter Estimation of Photovoltaic Models via Cuckoo Search , 2013, J. Appl. Math..

[62]  S. Zodpey,et al.  Operations research in public health. , 2010, Indian journal of public health.

[63]  Xu Chen,et al.  Hybridizing cuckoo search algorithm with biogeography-based optimization for estimating photovoltaic model parameters , 2019, Solar Energy.

[64]  Muhammad Kamran Siddiqui,et al.  Study of biological networks using graph theory , 2017, Saudi journal of biological sciences.

[65]  Giacomo Capizzi,et al.  A radial basis function neural network based approach for the electrical characteristics estimation of a photovoltaic module , 2012, ArXiv.

[66]  Hossam Faris,et al.  Clustering analysis using a novel locality-informed grey wolf-inspired clustering approach , 2019, Knowledge and Information Systems.

[67]  Hossam Faris,et al.  Salp Swarm Algorithm: A bio-inspired optimizer for engineering design problems , 2017, Adv. Eng. Softw..

[68]  Dalia Yousri,et al.  Flower Pollination Algorithm based solar PV parameter estimation , 2015 .

[69]  Dhiaa Halboot Muhsen,et al.  Parameters extraction of double diode photovoltaic module’s model based on hybrid evolutionary algorithm , 2015 .

[70]  Shu-Cherng Fang,et al.  An Electromagnetism-like Mechanism for Global Optimization , 2003, J. Glob. Optim..

[71]  N. Rajasekar,et al.  Metaheuristic algorithms for PV parameter identification: A comprehensive review with an application to threshold setting for fault detection in PV systems , 2018 .

[72]  Jin Song Dong,et al.  Binary Harris Hawks Optimizer for High-Dimensional, Low Sample Size Feature Selection , 2019, Algorithms for Intelligent Systems.

[73]  Zhen Pan,et al.  Short-term natural gas consumption prediction based on Volterra adaptive filter and improved whale optimization algorithm , 2020, Eng. Appl. Artif. Intell..

[74]  Seyedali Mirjalili,et al.  Multiple scenarios multi-objective salp swarm optimization for sizing of standalone photovoltaic system , 2020, Renewable Energy.

[75]  Ponnuthurai Nagaratnam Suganthan,et al.  Static and dynamic photovoltaic models’ parameters identification using Chaotic Heterogeneous Comprehensive Learning Particle Swarm Optimizer variants , 2019, Energy Conversion and Management.

[76]  Ponnuthurai N. Suganthan,et al.  Recent advances in differential evolution - An updated survey , 2016, Swarm Evol. Comput..

[77]  Hossam Faris,et al.  An intelligent system for spam detection and identification of the most relevant features based on evolutionary Random Weight Networks , 2019, Inf. Fusion.

[78]  Shivani Mehta,et al.  Harris Hawks Optimization for Solving Optimum Load Dispatch Problem in Power System , 2019 .

[79]  J. Bednarz,et al.  Cooperative Hunting Harris' Hawks (Parabuteo unicinctus) , 1988, Science.

[80]  Pierre Ele,et al.  Important notes on parameter estimation of solar photovoltaic cell , 2019, Energy Conversion and Management.

[81]  D. Maskell,et al.  Parameter estimation of solar cells and modules using an improved adaptive differential evolution algorithm , 2013 .

[82]  Shuai Han,et al.  A Novel Hybrid Prediction Model for Hourly Gas Consumption in Supply Side Based on Improved Whale Optimization Algorithm and Relevance Vector Machine , 2019, IEEE Access.

[83]  Rabeh Abbassi,et al.  An efficient salp swarm-inspired algorithm for parameters identification of photovoltaic cell models , 2019, Energy Conversion and Management.