TURBULENCE SETS THE INITIAL CONDITIONS FOR STAR FORMATION IN HIGH-PRESSURE ENVIRONMENTS
暂无分享,去创建一个
J. M. Jackson | J. Foster | J. Rathborne | S. Longmore | J. Kruijssen | J. Alves | J. Bally | N. Bastian | Y. Contreras | G. Garay | L. Testi | A. Walsh | J. Jackson | A. Walsh
[1] A. Wolfendale,et al. Corrections to virial estimates of molecular cloud masses , 1988 .
[2] J. Carlstrom,et al. SUBMILLIMETER CONTINUUM SURVEY OF THE GALACTIC CENTER , 1994 .
[3] E. Vázquez-Semadeni. Hierarchical Structure in Nearly Pressureless Flows as a Consequence of Self-similar Statistics , 1994 .
[4] Eugene Serabyn,et al. THE GALACTIC CENTER ENVIRONMENT , 1996 .
[5] K. Menten,et al. Infrared Space Observatory Long Wavelength Spectrometer Observations of a Cold Giant Molecular Cloud Core near the Galactic Center , 1998 .
[6] P. Padoan,et al. A Super-Alfvénic Model of Dark Clouds , 1999, astro-ph/9901288.
[7] E. Serabyn,et al. Quiescent Giant Molecular Cloud Cores in the Galactic Center , 2001 .
[8] Molecular excitation and differential gas-phase depletions in the ic 5146 dark cloud , 2001, astro-ph/0103521.
[9] Christopher F. McKee,et al. A General Theory of Turbulence-regulated Star Formation, from Spirals to Ultraluminous Infrared Galaxies , 2005, astro-ph/0505177.
[10] Max Pettini,et al. The Mass-Metallicity Relation at z≳2 , 2006, astro-ph/0602473.
[11] Andrew M. Hopkins,et al. On the Normalization of the Cosmic Star Formation History , 2006, astro-ph/0601463.
[12] A Multiwavelength Study of Young Massive Star Forming Regions. II. The Dust Environment , 2007, 0706.2171.
[13] A. Goodman,et al. THE “TRUE” COLUMN DENSITY DISTRIBUTION IN STAR-FORMING MOLECULAR CLOUDS , 2008, 0806.3441.
[14] M. Lombardi,et al. 2MASS wide field extinction maps II. The Ophiuchus and the Lupus cloud complexes , 2008, 0809.3740.
[15] T. Henning,et al. ATCA and Spitzer Observations of the Binary Protostellar Systems CG 30 and BHR 71 , 2008, 0805.1533.
[16] R. Klessen,et al. Comparing the statistics of interstellar turbulence in simulations and observations - Solenoidal versus compressive turbulence forcing , 2009, 0905.1060.
[17] T. Henning,et al. Probing the evolution of molecular cloud structure: From quiescence to birth , 2009, 0911.5648.
[18] Shy Genel,et al. THE SINS SURVEY: SINFONI INTEGRAL FIELD SPECTROSCOPY OF z ∼ 2 STAR-FORMING GALAXIES , 2009, 0903.1872.
[19] D. Elbaz,et al. DIFFERENT STAR FORMATION LAWS FOR DISKS VERSUS STARBURSTS AT LOW AND HIGH REDSHIFTS , 2010, 1003.3889.
[20] M. Lombardi,et al. ON THE STAR FORMATION RATES IN MOLECULAR CLOUDS , 2010, 1009.2985.
[21] M. Norman,et al. ON THE DENSITY DISTRIBUTION IN STAR-FORMING INTERSTELLAR CLOUDS , 2010, TG.
[22] Harvard,et al. Intense star formation within resolved compact regions in a galaxy at z = 2.3 , 2010, Nature.
[23] Daniel J. Price,et al. A method for reconstructing the PDF of a 3D turbulent density field from 2D observations , 2010, 1003.4151.
[24] Astronomy,et al. Gravity or turbulence? II. Evolving column density PDFs in molecular clouds , 2011, 1105.5411.
[25] L. Allen,et al. A CORRELATION BETWEEN SURFACE DENSITIES OF YOUNG STELLAR OBJECTS AND GAS IN EIGHT NEARBY MOLECULAR CLOUDS , 2011, 1107.0966.
[26] P. Padoan,et al. THE STAR FORMATION RATE OF SUPERSONIC MAGNETOHYDRODYNAMIC TURBULENCE , 2009, 0907.0248.
[27] P. Cox,et al. THE INTERSTELLAR MEDIUM IN DISTANT STAR-FORMING GALAXIES: TURBULENT PRESSURE, FRAGMENTATION, AND CLOUD SCALING RELATIONS IN A DENSE GAS DISK AT z = 2.3 , 2011, 1110.2780.
[28] F. Bournaud,et al. STAR FORMATION LAWS AND THRESHOLDS FROM INTERSTELLAR MEDIUM STRUCTURE AND TURBULENCE , 2012, 1210.2355.
[29] S. Glover,et al. The density variance–Mach number relation in supersonic turbulence – I. Isothermal, magnetized gas , 2012, 1203.2117.
[30] K. Menten,et al. The thermal state of molecular clouds in the Galactic center: evidence for non-photon-driven heating , 2012, Proceedings of the International Astronomical Union.
[31] A UNIVERSAL, LOCAL STAR FORMATION LAW IN GALACTIC CLOUDS, NEARBY GALAXIES, HIGH-REDSHIFT DISKS, AND STARBURSTS , 2011, 1109.4150.
[32] J. Foster,et al. G0.253 + 0.016: A MOLECULAR CLOUD PROGENITOR OF AN ARCHES-LIKE CLUSTER , 2011, 1111.3199.
[33] M. Lombardi,et al. STAR FORMATION RATES IN MOLECULAR CLOUDS AND THE NATURE OF THE EXTRAGALACTIC SCALING RELATIONS , 2011, 1112.4466.
[34] L. Hartmann,et al. THE DEPENDENCE OF STAR FORMATION EFFICIENCY ON GAS SURFACE DENSITY , 2012, 1212.4543.
[35] S. Longmore,et al. Comparing molecular gas across cosmic time-scales: the Milky Way as both a typical spiral galaxy and a high-redshift galaxy analogue , 2013, 1309.0505.
[36] J. Ott,et al. Variations in the Galactic star formation rate and density thresholds for star formation , 2012, 1208.4256.
[37] Qizhou Zhang,et al. THE GALACTIC CENTER CLOUD G0.253+0.016: A MASSIVE DENSE CLOUD WITH LOW STAR FORMATION POTENTIAL , 2013, 1301.1338.
[38] T. Henning,et al. Connection between dense gas mass fraction, turbulence driving, and star formation efficiency of molecular clouds , 2013, 1304.5036.
[39] S. Longmore,et al. What controls star formation in the central 500 pc of the Galaxy , 2013, 1303.6286.
[40] T. Henning,et al. The dynamics and star-forming potential of the massive Galactic centre cloud G0.253+0.016 , 2014, 1404.1372.
[41] J. M. Jackson,et al. G0.253+0.016: A CENTRALLY CONDENSED, HIGH-MASS PROTOCLUSTER , 2014, 1403.0996.