TURBULENCE SETS THE INITIAL CONDITIONS FOR STAR FORMATION IN HIGH-PRESSURE ENVIRONMENTS

Despite the simplicity of theoretical models of supersonically turbulent, isothermal media, their predictions successfully match the observed gas structure and star formation activity within low-pressure (P=k < 105 K cm

[1]  A. Wolfendale,et al.  Corrections to virial estimates of molecular cloud masses , 1988 .

[2]  J. Carlstrom,et al.  SUBMILLIMETER CONTINUUM SURVEY OF THE GALACTIC CENTER , 1994 .

[3]  E. Vázquez-Semadeni Hierarchical Structure in Nearly Pressureless Flows as a Consequence of Self-similar Statistics , 1994 .

[4]  Eugene Serabyn,et al.  THE GALACTIC CENTER ENVIRONMENT , 1996 .

[5]  K. Menten,et al.  Infrared Space Observatory Long Wavelength Spectrometer Observations of a Cold Giant Molecular Cloud Core near the Galactic Center , 1998 .

[6]  P. Padoan,et al.  A Super-Alfvénic Model of Dark Clouds , 1999, astro-ph/9901288.

[7]  E. Serabyn,et al.  Quiescent Giant Molecular Cloud Cores in the Galactic Center , 2001 .

[8]  Molecular excitation and differential gas-phase depletions in the ic 5146 dark cloud , 2001, astro-ph/0103521.

[9]  Christopher F. McKee,et al.  A General Theory of Turbulence-regulated Star Formation, from Spirals to Ultraluminous Infrared Galaxies , 2005, astro-ph/0505177.

[10]  Max Pettini,et al.  The Mass-Metallicity Relation at z≳2 , 2006, astro-ph/0602473.

[11]  Andrew M. Hopkins,et al.  On the Normalization of the Cosmic Star Formation History , 2006, astro-ph/0601463.

[12]  A Multiwavelength Study of Young Massive Star Forming Regions. II. The Dust Environment , 2007, 0706.2171.

[13]  A. Goodman,et al.  THE “TRUE” COLUMN DENSITY DISTRIBUTION IN STAR-FORMING MOLECULAR CLOUDS , 2008, 0806.3441.

[14]  M. Lombardi,et al.  2MASS wide field extinction maps II. The Ophiuchus and the Lupus cloud complexes , 2008, 0809.3740.

[15]  T. Henning,et al.  ATCA and Spitzer Observations of the Binary Protostellar Systems CG 30 and BHR 71 , 2008, 0805.1533.

[16]  R. Klessen,et al.  Comparing the statistics of interstellar turbulence in simulations and observations - Solenoidal versus compressive turbulence forcing , 2009, 0905.1060.

[17]  T. Henning,et al.  Probing the evolution of molecular cloud structure: From quiescence to birth , 2009, 0911.5648.

[18]  Shy Genel,et al.  THE SINS SURVEY: SINFONI INTEGRAL FIELD SPECTROSCOPY OF z ∼ 2 STAR-FORMING GALAXIES , 2009, 0903.1872.

[19]  D. Elbaz,et al.  DIFFERENT STAR FORMATION LAWS FOR DISKS VERSUS STARBURSTS AT LOW AND HIGH REDSHIFTS , 2010, 1003.3889.

[20]  M. Lombardi,et al.  ON THE STAR FORMATION RATES IN MOLECULAR CLOUDS , 2010, 1009.2985.

[21]  M. Norman,et al.  ON THE DENSITY DISTRIBUTION IN STAR-FORMING INTERSTELLAR CLOUDS , 2010, TG.

[22]  Harvard,et al.  Intense star formation within resolved compact regions in a galaxy at z = 2.3 , 2010, Nature.

[23]  Daniel J. Price,et al.  A method for reconstructing the PDF of a 3D turbulent density field from 2D observations , 2010, 1003.4151.

[24]  Astronomy,et al.  Gravity or turbulence? II. Evolving column density PDFs in molecular clouds , 2011, 1105.5411.

[25]  L. Allen,et al.  A CORRELATION BETWEEN SURFACE DENSITIES OF YOUNG STELLAR OBJECTS AND GAS IN EIGHT NEARBY MOLECULAR CLOUDS , 2011, 1107.0966.

[26]  P. Padoan,et al.  THE STAR FORMATION RATE OF SUPERSONIC MAGNETOHYDRODYNAMIC TURBULENCE , 2009, 0907.0248.

[27]  P. Cox,et al.  THE INTERSTELLAR MEDIUM IN DISTANT STAR-FORMING GALAXIES: TURBULENT PRESSURE, FRAGMENTATION, AND CLOUD SCALING RELATIONS IN A DENSE GAS DISK AT z = 2.3 , 2011, 1110.2780.

[28]  F. Bournaud,et al.  STAR FORMATION LAWS AND THRESHOLDS FROM INTERSTELLAR MEDIUM STRUCTURE AND TURBULENCE , 2012, 1210.2355.

[29]  S. Glover,et al.  The density variance–Mach number relation in supersonic turbulence – I. Isothermal, magnetized gas , 2012, 1203.2117.

[30]  K. Menten,et al.  The thermal state of molecular clouds in the Galactic center: evidence for non-photon-driven heating , 2012, Proceedings of the International Astronomical Union.

[31]  A UNIVERSAL, LOCAL STAR FORMATION LAW IN GALACTIC CLOUDS, NEARBY GALAXIES, HIGH-REDSHIFT DISKS, AND STARBURSTS , 2011, 1109.4150.

[32]  J. Foster,et al.  G0.253 + 0.016: A MOLECULAR CLOUD PROGENITOR OF AN ARCHES-LIKE CLUSTER , 2011, 1111.3199.

[33]  M. Lombardi,et al.  STAR FORMATION RATES IN MOLECULAR CLOUDS AND THE NATURE OF THE EXTRAGALACTIC SCALING RELATIONS , 2011, 1112.4466.

[34]  L. Hartmann,et al.  THE DEPENDENCE OF STAR FORMATION EFFICIENCY ON GAS SURFACE DENSITY , 2012, 1212.4543.

[35]  S. Longmore,et al.  Comparing molecular gas across cosmic time-scales: the Milky Way as both a typical spiral galaxy and a high-redshift galaxy analogue , 2013, 1309.0505.

[36]  J. Ott,et al.  Variations in the Galactic star formation rate and density thresholds for star formation , 2012, 1208.4256.

[37]  Qizhou Zhang,et al.  THE GALACTIC CENTER CLOUD G0.253+0.016: A MASSIVE DENSE CLOUD WITH LOW STAR FORMATION POTENTIAL , 2013, 1301.1338.

[38]  T. Henning,et al.  Connection between dense gas mass fraction, turbulence driving, and star formation efficiency of molecular clouds , 2013, 1304.5036.

[39]  S. Longmore,et al.  What controls star formation in the central 500 pc of the Galaxy , 2013, 1303.6286.

[40]  T. Henning,et al.  The dynamics and star-forming potential of the massive Galactic centre cloud G0.253+0.016 , 2014, 1404.1372.

[41]  J. M. Jackson,et al.  G0.253+0.016: A CENTRALLY CONDENSED, HIGH-MASS PROTOCLUSTER , 2014, 1403.0996.