Non-isothermal creep age forming of Al-Cu-Li alloy: Experiment and modeling

[1]  S. D. Yadav,et al.  Deep insights on the creep behavior and mechanism of a novel G115 steel: Micromechanical modeling and experimental validation , 2021, International Journal of Plasticity.

[2]  L. Zhan,et al.  Creep aging properties variation and microstructure evolution for 2195 Al–Li alloys with various loading rates , 2021, Materials Science and Engineering: A.

[3]  W. He,et al.  Influence of microstructural and crystallographic inhomogeneity on tensile anisotropy in thick-section Al–Li–Cu–Mg plates , 2021, Materials Science and Engineering: A.

[4]  Chunhui Liu,et al.  Strong stress-level dependence of creep-ageing behavior in Al–Cu–Li alloy , 2020 .

[5]  Xiaodong Liu,et al.  The effects of temperature on the creep-aging behavior and mechanical properties of AA2050-T34 alloy , 2020 .

[6]  Minghui Huang,et al.  Large creep formability and strength–ductility synergy enabled by engineering dislocations in aluminum alloys , 2020 .

[7]  Jianjun Li,et al.  Stress-level-dependency and bimodal precipitation behaviors during creep ageing of Al-Cu alloy: Experiments and modeling , 2018, International Journal of Plasticity.

[8]  M. Derradji,et al.  Influence of the rolling direction on the microstructure, mechanical, anisotropy and gamma rays shielding properties of an Al-Cu-Li-Mg-X alloy , 2018, Materials Science and Engineering: A.

[9]  C. Lei,et al.  Role of thermal-mechanical loading sequence on creep aging behaviors of 5A90 Al-Li alloy , 2018 .

[10]  Yong-bo Xu,et al.  Strengthening mechanisms, deformation behavior, and anisotropic mechanical properties of Al-Li alloys: A review , 2017, Journal of advanced research.

[11]  G. Huang,et al.  Investigation on formation mechanism of T1 precipitate in an Al-Cu-Li alloy , 2017 .

[12]  Yan Huang,et al.  Effects of different aging treatments on microstructures and mechanical properties of Al-Cu-Li alloy joints welded by electron beam welding , 2017 .

[13]  Jianguo Lin,et al.  A unified constitutive model for asymmetric tension and compression creep-ageing behaviour of naturally aged Al-Cu-Li alloy , 2017 .

[14]  He Yang,et al.  Dependence of creep age formability on initial temper of an Al-Zn-Mg-Cu alloy , 2016 .

[15]  Jianguo Lin,et al.  Experimental investigation of tension and compression creep-ageing behaviour of AA2050 with different initial tempers , 2016 .

[16]  Xinyun Wang,et al.  A new dynamic recrystallisation model of an extruded Al-Cu-Li alloy during high-temperature deformation , 2015 .

[17]  T. Dorin,et al.  Quantitative description of the T1 formation kinetics in an Al–Cu–Li alloy using differential scanning calorimetry, small-angle X-ray scattering and transmission electron microscopy , 2014 .

[18]  Constantinos Soutis,et al.  Recent developments in advanced aircraft aluminium alloys , 2014 .

[19]  J. A. Warren,et al.  Irreversible thermodynamics of creep in crystalline solids , 2013, 1307.7128.

[20]  Yun-lai Deng,et al.  Constitutive modeling for creep age forming of heat-treatable strengthening aluminum alloys containing plate or rod shaped precipitates , 2013 .

[21]  M. Parsa,et al.  Investigating spring back phenomena in double curved sheet metals forming , 2012 .

[22]  Jianguo Lin,et al.  Experimental studies and constitutive modelling of the hardening of aluminium alloy 7055 under creep age forming conditions , 2011 .

[23]  M. Wan,et al.  Constitutive equations in creep of 7B04 aluminum alloys , 2010 .

[24]  Huang Lina,et al.  FEM Analysis of Spring-backs in Age Forming of Aluminum Alloy Plates , 2007 .

[25]  Trevor A. Dean,et al.  Constitutive modelling of primary creep for age forming an aluminium alloy , 2004 .

[26]  Trevor A. Dean,et al.  Modelling of springback in creep forming thick aluminum sheets , 2004 .

[27]  O. Sherby,et al.  Influence of grain size, solute atoms and second-phase particles on creep behavior of polycrystalline solids , 2002 .

[28]  T. Ungár Dislocation densities, arrangements and character from X-ray diffraction experiments , 2001 .

[29]  P. Sanders,et al.  Dislocations, grain size and planar faults in nanostructured copper determined by high resolution X-ray diffraction and a new procedure of peak profile analysis , 1998 .

[30]  Saeed Foroudastan,et al.  A mathematical model of autoclave age forming , 1991 .

[31]  Mitchell C. Holman,et al.  Autoclave age forming large aluminum aircraft panels , 1989 .

[32]  A. Varschavsky,et al.  The influence of particle shape on the non-isothermal kinetics of precipitate dissolution , 1983 .

[33]  A. Deschamps,et al.  Quantitative Characterization of Precipitate Microstructures in Metallic Alloys Using Small-Angle Scattering , 2012, Metallurgical and Materials Transactions A.

[34]  Trevor A. Dean,et al.  A review of the development of creep age forming: Experimentation, modelling and applications , 2011 .

[35]  J. Nie,et al.  Microstructural design of high-strength aluminum alloys , 1998 .