Ambiguous volatility, possibility and utility in continuous time

This paper formulates a model of utility for a continuous time framework that captures the decision-maker’s concern with ambiguity about both the drift and volatility of the driving process. At a technical level, the analysis requires a significant departure from existing continuous time modeling because it cannot be done within a probability space framework. This is because ambiguity about volatility leads invariably to a set of nonequivalent priors, that is, to priors that disagree about which scenarios are possible.

[1]  Larry G. Epstein,et al.  Stochastic Differential Utility, Appendix C: The Infinite-Horizon Case , 1992 .

[2]  Mark T. Mueller,et al.  Warning: Physics Envy May be Hazardous to Your Wealth! , 2010, 1003.2688.

[3]  Shige Peng,et al.  Function Spaces and Capacity Related to a Sublinear Expectation: Application to G-Brownian Motion Paths , 2008, 0802.1240.

[4]  Yongsheng Song,et al.  Some properties on G-evaluation and its applications to G-martingale decomposition , 2010, 1001.2802.

[5]  N. Bloom The Impact of Uncertainty Shocks , 2007 .

[6]  S. Werlang,et al.  Uncertainty Aversion, Risk Aversion, and the Optimal Choice of Portfolio , 1992 .

[7]  H. M. Soner,et al.  Martingale Representation Theorem for the G-Expectation , 2010, 1001.3802.

[8]  H. Soner,et al.  Quasi-sure Stochastic Analysis through Aggregation , 2010, 1003.4431.

[9]  Massimo Marinacci,et al.  Mutual absolute continuity of multiple priors , 2007, J. Econ. Theory.

[10]  S. Peng G -Expectation, G -Brownian Motion and Related Stochastic Calculus of Itô Type , 2006, math/0601035.

[11]  S. Peng Multi-dimensional G-Brownian motion and related stochastic calculus under G-expectation , 2006, math/0601699.

[12]  Marcel Nutz,et al.  Random G-expectations. , 2010, 1009.2168.

[13]  Daniel B. Nelson,et al.  Simple Binomial Processes as Diffusion Approximations in Financial Models , 1990 .

[14]  Nizar Touzi,et al.  Wellposedness of second order backward SDEs , 2010, 1003.6053.

[15]  Philip H. Dybvig,et al.  Empty Promises and Arbitrage , 1999 .

[16]  Pablo A. Guerrón-Quintana,et al.  Risk Matters: The Real Effects of Volatility Shocks , 2009 .

[17]  Ren-Raw Chen Pricing interest rate contingent claims , 1990 .

[18]  H. Soner,et al.  Dual Formulation of Second Order Target Problems , 2010, 1003.6050.

[19]  Larry G. Epstein,et al.  Ambiguity, Information Quality and Asset Pricing , 2008 .

[20]  Mingshang Hu,et al.  Explicit solutions of G-heat equation with a class of initial conditions by G-Brownian motion , 2009, 0907.2748.

[21]  I. Gilboa,et al.  Maxmin Expected Utility with Non-Unique Prior , 1989 .

[22]  Hans Föllmer,et al.  Calcul d'ito sans probabilites , 1981 .

[23]  R. Karandikar On pathwise stochastic integration , 1995 .

[24]  Natalia Sizova,et al.  Volatility in Equilibrium: Asymmetries and Dynamic Dependencies , 2009 .

[25]  Marco Avellaneda,et al.  Pricing Interest Rate Contingent Claims in Markets with Uncertain Volatility , 1998 .

[26]  Pengshige NONLINEAR EXPECTATIONS AND NONLINEAR MARKOV CHAINS , 2005 .

[27]  池田 信行,et al.  Stochastic differential equations and diffusion processes , 1981 .

[28]  Joerg Vorbrink,et al.  Financial markets with volatility uncertainty , 2010, 1012.1535.

[29]  Marcel Nutz,et al.  A Quasi-Sure Approach to the Control of Non-Markovian Stochastic Differential Equations , 2011, ArXiv.

[30]  Peter Carr,et al.  Volatility Derivatives , 2009 .

[31]  M. Weitzman Subjective Expectations and Asset-Return Puzzles , 2007 .

[32]  Magali Kervarec,et al.  Risk measuring under model uncertainty , 2010 .

[33]  Larry G. Epstein,et al.  Ambiguity and Asset Markets , 2010 .

[34]  Shige Peng,et al.  Filtration Consistent Nonlinear Expectations and Evaluations of Contingent Claims , 2004 .

[35]  Xiongzhi Chen Brownian Motion and Stochastic Calculus , 2008 .

[36]  Tomasz Strzalecki,et al.  Axiomatic Foundations of Multiplier Preferences , 2009 .

[37]  M. Mandelkern,et al.  On the uniform continuity of Tietze extensions , 1990 .

[38]  Larry G. Epstein,et al.  Ambiguity, risk, and asset returns in continuous time , 2000 .

[39]  Christopher G. Lamoureux,et al.  Forecasting Stock-Return Variance: Toward an Understanding of Stochastic Implied Volatilities , 1993 .

[40]  Martin Schneider,et al.  Recursive multiple-priors , 2003, J. Econ. Theory.

[41]  P. Illeditsch,et al.  Ambiguous Information, Portfolio Inertia, and Excess Volatility , 2011 .

[42]  Larry G. Epstein,et al.  Ambiguous Volatility and Asset Pricing in Continuous Time , 2012, 1301.4614.

[43]  Jia-An Yan,et al.  Semimartingale Theory and Stochastic Calculus , 1992 .

[44]  S. Heston A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options , 1993 .

[45]  Terry Lyons,et al.  Uncertain volatility and the risk-free synthesis of derivatives , 1995 .

[46]  L. Denis,et al.  A THEORETICAL FRAMEWORK FOR THE PRICING OF CONTINGENT CLAIMS IN THE PRESENCE OF MODEL UNCERTAINTY , 2006, math/0607111.

[47]  S. Shreve,et al.  Stochastic differential equations , 1955, Mathematical Proceedings of the Cambridge Philosophical Society.

[48]  Shige Peng,et al.  NONLINEAR EXPECTATIONS AND NONLINEAR MARKOV CHAINS , 2005 .

[49]  I. Drechsler,et al.  Uncertainty, Time-Varying Fear, and Asset Prices , 2013 .

[50]  Ivan Shaliastovich,et al.  AN EQUILIBRIUM GUIDE TO DESIGNING AFFINE PRICING MODELS , 2008 .

[51]  Shige Peng,et al.  Stopping times and related Itô's calculus with G-Brownian motion , 2009, 0910.3871.

[52]  Alan G. White,et al.  The Pricing of Options on Assets with Stochastic Volatilities , 1987 .

[53]  Costis Skiadas Robust control and recursive utility , 2003, Finance Stochastics.

[54]  I. Gihman,et al.  Controlled Stochastic Processes , 1979 .

[55]  Rama Cont Model Uncertainty and its Impact on the Pricing of Derivative Instruments , 2004 .

[56]  D. Duffie,et al.  Continuous-time security pricing: A utility gradient approach , 1994 .

[57]  Costis Skiadas,et al.  Smooth Ambiguity Aversion toward Small Risks and Continuous-Time Recursive Utility , 2013, Journal of Political Economy.

[58]  Larry G. Epstein,et al.  Stochastic differential utility , 1992 .

[59]  M. Avellaneda,et al.  Pricing and hedging derivative securities in markets with uncertain volatilities , 1995 .

[60]  Marco Avellaneda,et al.  A New Approach for Pricing Derivative Securities in Markets with Uncertain Volatilities: A 'Case Study' on the Trinomial Tree , 1998 .

[61]  S. Peng Nonlinear Expectations and Stochastic Calculus under Uncertainty , 2010, Probability Theory and Stochastic Modelling.

[62]  George Yin,et al.  Asymptotic Expansions of Transition Densities for Hybrid Jump-diffusions , 2004 .

[63]  Lars Peter Hansen,et al.  A QUARTET OF SEMIGROUPS FOR MODEL SPECIFICATION, ROBUSTNESS, PRICES OF RISK, AND MODEL DETECTION , 2003 .

[64]  Alʹbert Nikolaevich Shiri︠a︡ev,et al.  Statistics of random processes , 1977 .