Parsimonious Support Vector Machines Modelling for Set Points in Industrial Processes Based on Genetic Algorithm Optimization
暂无分享,去创建一个
Andrés Sanz-García | Francisco J. Martínez de Pisón Ascacibar | Fernando Antoñanzas-Torres | Julio Fernández-Ceniceros
[1] Melanie Mitchell,et al. An introduction to genetic algorithms , 1996 .
[2] Julio Fern'andez-Ceniceros,et al. Methodology based on genetic optimisation to develop overall parsimony models for predicting temperature settings on annealing furnace , 2014 .
[3] Simon Haykin,et al. Neural Networks: A Comprehensive Foundation , 1998 .
[4] Emilio Corchado,et al. Hybrid intelligent algorithms and applications , 2010, Inf. Sci..
[5] Francisco Javier Martínez de Pisón Ascacíbar. Optimización mediante técnicas de minería de datos del ciclo de recocido de una línea de galvanizado , 2003 .
[6] Álvaro Herrero,et al. Neural visualization of network traffic data for intrusion detection , 2011, Appl. Soft Comput..
[7] Vladimir N. Vapnik,et al. The Nature of Statistical Learning Theory , 2000, Statistics for Engineering and Information Science.
[8] Yun Zhu,et al. Development of Hot Dip Galvanized Steel Strip and Its Application in Automobile Industry , 2006 .
[9] Yong-Zai Lu,et al. Development and application of an integrated neural system for an HDCL , 1997, IEEE Trans. Neural Networks.
[10] Zbigniew Michalewicz,et al. Handling Constraints in Genetic Algorithms , 1991, ICGA.
[11] Ana González-Marcos,et al. Steel annealing furnace robust neural network model , 2005 .
[12] Emilio Corchado,et al. Editorial: New trends and applications on hybrid artificial intelligence systems , 2012, Neurocomputing.
[13] Emilio Corchado,et al. A soft computing method for detecting lifetime building thermal insulation failures , 2010, Integr. Comput. Aided Eng..